

Generation of oxide surface patches promoting H-spillover in Ru/(TiO_x)MnO catalysts enables CO₂ reduction to CO

Hui Kang,¹ Shiyan Li,¹ Jun Ma,¹ Xuxu Zhai,¹ Siglinda Perathoner,² Gabriele Centi,² <u>Yuefeng Liu</u>^{*,1} ¹ Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China ² Department of ChiBioFarAm, University of Messina, Messina 98166, Italy * e-mail: yuefeng.liu@dicp.ac.cn

Gas-driven reconstruction is an attractive and precise strategy to tune sub-nano even atomic structure for catalysts. The migration of reducible metal oxides (especially for TiO₂) to the surface of metal nanoparticles can inhibit the sintering but has a strong negative impact on the catalytic activity. Herein, we reveal the *in-situ* creation of TiO_x patches over the MnO support to generate effective transport channels for H-spillover to transport it from the Ru nanoparticles to the MnO sites responsible for reducing CO₂ to CO, a key reaction for CO₂ conversion to high-value chemicals. The Ru/(TiO_x)MnO (Ru/Ti/Mn) catalyst shows a 3.3-fold increase in reverse water gas shift (RWGS) performance compared with conventional Ru/MnO_x catalysts (Fig. 1a) due to the enhcanced H-spillover (Fig. 1b). Through a combination of physicochemical methods, including *in-situ* studies, catalytic and kinetic data, and theoretical modelling, we demonstrate that the oxide-oxide interfaces are spontaneously generated during reductive treatment in H₂ at temperatures below 500 °C and are responsible for the increased activity (Fig. 1c). The results open new perspectives for the design of novel selective hydrogenation catalysts via the *in-situ* creation of oxide-oxide interfaces acting as H species transport channels.

Figure 1. a, CO_2 hydrogenation performance for Ru/MnOx and RuTiMn. **b**, H-D exchange DRIFTs and **c**, TiO₂/MnO interface as effective H transport channel accelerate CO_2 to CO.

References

- 1. M. Monai, et al., Science, 2023, 380. 644-651.
- 2. H. Kang, et al. Nature Catalysis, 2023, 6,1062-1072.

Acknowledgements

This work was financially supported by the NSFC of China (22172161, 21972140 and 22472168) and LiaoNing Revitalization Talents Program (XLYC1907053).