

Keggin heteropolyanions: novel versatile deoxydehydration catalysts

<u>Alixandre MAGERAT</u>^{*}, Sophie HERMANS, Eric M. GAIGNEAUX Université catholique de Louvain (UCLouvain), Institute of Condensed Matter and Nanosciences (IMCN), Place Louis Pasteur, 1 – 1438 Louvain-la-Neuve, Belgium *alixandre.magerat@uclouvain.be

Significance and Relevance

Deoxydehydration (DODH) is an important reaction to upgrade (bio-based) polyols and make them practically useful¹. Catalysts for this transformation are generally Mo, Re or V-based organometallics or oxides², while the use of Keggin heteropolyanions (HPAs) has never been reported before. We report here, for the first time, the promising catalytic performance of $(TBA)_3PMo_{12}O_{40}$ (TBA = tetrabutylammonium), a simple HPA obtained by precipitation of the commercially available $H_3PMo_{12}O_{40}$ with TBA⁺. Additionally, we show that substituting a W by Re in $PW_{12}O_{40}^{3-}$ dramatically increases its DODH-activity, hence demonstrating the high versatility of HPAs. Characterizations (IR, ³¹P NMR and UV-vis) of the used catalysts are provided to investigate the nature of the active species of these novel catalysts.

Preferred and 2nd choice for the topic: "Green Chemistry and biomass transformation, renewable resources conversion"

Preferred presentation: Oral only

Introduction and Motivations

Most of today's chemicals production relies on fossil fuels, but their finite nature requires exploring alternative raw material sources. The use of biomass-derived compounds as such is a promising yet challenging option due to their polyoxygenated nature, often under the form of polyhydroxylated chains. Such functionality (vicinal diols) can be transformed into readily functionalizable alkene through DODH (Fig. 1). Hereunder, we describe a pioneering work where Keggin HPAs are used as DODH catalysts for the very first time.

Figure 1. Deoxydehydration reaction. The number of H_2O molecules produced depends on the reductant's nature.

Results and Discussion

Keggin phosphomolybdates and -tungstates $(PM_{12}O_{40}^{3^{-}} = PM$ with M being Mo or W) were first considered as potential catalysts and tested in the model DODH of 1,2-hexanediol into 1-hexene (reaction on Fig. 2 (b)). Three different counter-cations were considered, namely H⁺ (HPM), NH₄⁺ (NH₄PM) and tetrabutylammonium (TBAPM) (Fig. 2 (a)). Within both W and Mo series, TBAPMs showed the highest 1-hexene yields. This was attributed to the absence of Bronsted acidity as the latter is known to be undesired for DODH catalysis, hence explaining the lower yields obtained with HPMs and NH₄PMs.

Additionally, PW demonstrated lower-DODH activity than their PMo counterparts, likely because W has less redox flexibility than Mo. To improve the DODH activity of TBAPW, we consented to a synthetic effort to replace one of the 12 tungsten atoms in the PW anion by a rhenium(V) one, yielding $(TBA)_4PW_{11}Re^{V}O_{40}$ (TBAPW₁₁Re). The latter was fully characterized by ³¹P NMR, IR (Fig. 2 (d-f)), ICP-AES,

PXRD and UV-vis (not shown here). The obtained 1-hexene yield was greatly improved with TBAPW₁₁Re, increasing from 9% for TBAPW to 73% for TBAPW₁₁Re (Fig. 2 (b)).

Recyclability tests (Fig. 3 (c)), combined with IR and ³¹P NMR analyses (Fig. 3 (d-f)), revealed that TBAPMo and TBAPW₁₁Re undergo partial, non-destructive dissolution during catalytic tests. Indeed, TBAPW₁₁Re showed the same IR and ³¹P NMR spectrum before and after catalysis.

Figure 2. Catalytic performances of (a) HPMs, NH₄PMs and TBAPMs (M=Mo or W) at different temperatures and (b) TBAPMo, TBAPW, TBAHPW₁₁ (monolacunary form of TBAPW, (TBA)₄H₃PW₁₁O₃₉) and TBAPW₁₁Re at 210°C. Reaction conditions: 18h; 5 mL of 1,2-hexanediol (0.1 mol/L) with n-dodecane as internal standard (0.1 mol/L); 5% Mo or W mol. or 2% mol Re. (c) Recycling experiments with TBAPMo and TBAPW₁₁Re. (d) IR and ³¹P NMR (e-f) spectra of TBAPMo and TBAPW₁₁Re before and after catalytic tests.

After catalysis, TBAPMo presented several peaks in ³¹P NMR that are attributed to several (TBA)₃PMo^{VI}_{12-x}Mo^V_x^{x-} species. The one-electron reduced TBAPMo could be obtained when it was reacted with Br₂, showing the reversibility of this reduced state. TBAPMo after catalytic test presented the same IR spectrum as before, at the exception of broadened Mo-O-Mo bands with decreased intensity. This behaviour has already been reported and is due to a strong coupling of bipolaron with the vibration of the bridging Mo-O-Mo bonds³. Hence, these results are also in line with a preserved Keggin structure.

Conclusion

This work represents the pioneering use of Keggin polyoxometalates as a versatile platform for the elaboration of performant deoxydehydration catalysts and is laying the groundwork for future catalytic systems including Keggin POMs for biomass valorization processes. Future works will entail exploring new POM formulations and optimizing their recovery and reuse.

Acknowledgements

The Université catholique de Louvain (UCLouvain) is acknowledged for the teaching assistant position.

References

- 1. F.C. Jentoft, Catal. Sci. Technol. 2022, 12, 6308-6358.
- 2. N.N. Tshibalonza, J.C.M. Monbaliu, Green Chem. 2017, 19, 3006-3013.
- 3. M. Fournier, C. Rocchiccioli-Deltcheff, L.P. Kazansky, Chem. Phys. Lett. 1994, 4, 297-300.