
 
Design of catalysts for CO2 hydrogenation with fine-tuned machine learning potentials 

 
Raffaele CHEULA1, Jonh KITCHIN2, and Mie ANDERSEN1* 

1Aarhus University, Center for Interstellar Catalysis, 8000 Aarhus, Denmark. 
2 Carnegie Mellon University, Department of Chemical Engineering, 15213 Pittsburgh (PA), USA. 

*mie@phys.au.dk 
 

Significance and Relevance 
We show the development and application of methodologies based on density functional theory and 
machine learning (graph Gaussian process regression and graph neural network potentials) for the 
modeling of surface reactions on nanoparticle catalysts. We demonstrate applications of the 
methodologies on CO2 hydrogenation processes on metals, single-atom alloys, and oxide materials. 
 
Preferred and 2nd choice for the topic: Multiscale modeling and advanced simulation aspects, CO2 
utilization and recycling. 
Preferred presentation: Oral preferred or Short Oral 
 
Introduction and Motivations 

Heterogeneous catalysis is nowadays expected to solve the challenges related to the diversification 
of energy sources and the reduction of greenhouse gases. The processes of CO2 hydrogenation have 
the potential to sustainably produce chemicals and fuels from green hydrogen and waste CO2 [1]. To 
make such processes economically advantageous, R&D in catalysis relies on the discovery and 
optimization of catalytic materials based on experimental testing and computational analyses. The in-
silico modeling and design of catalyst materials must tackle the extreme complexity of chemical 
reactions at catalytic surfaces. This makes the direct application of density-functional theory (DFT) 
methods computationally prohibitive, especially when targeting a wide combinatory space of elements 
of the periodic table. This problem can be addressed with machine learning (ML) techniques, which 
can significantly reduce the number of DFT calculations required. 

In this contribution, we apply DFT and ML models to study CO2 hydrogenation reactions on a wide 
range of bi-metallic catalysts, including single-atom alloys (SAAs), i.e., materials made of single metal 
atoms dispersed within the surface layer of another metal. Particular attention is given to SAA 
materials and their ability to break the Brønsted-Evans-Polanyi relations that limit the performances 
of conventional catalysts. 
 
Materials and Methods 

We use a graph-based Gaussian Process Regression (WWL-GPR) model [2] and machine learning 
potentials (MLP) from the Open Catalyst project [3-4] to calculate the adsorption energies and 
activation energies of the reaction mechanisms. We include in the study multiple crystal facets that 
catalyst nanoparticles can expose under reaction conditions. The use of pre-trained MLP models from 
the Open Catalyst project [4] allows us to substitute most of the DFT calculations with much faster ML 
evaluations in the search for minima and saddle points of the potential energy surface. Eventually, we 
apply structure-dependent mean-field microkinetic modeling [5] and finite differences reactor 
modeling to calculate the catalytic activity of the materials under investigation, accounting for the 
contribution of the different active sites of the catalyst nanoparticles. 
 
Results and Discussion 

The application of the framework to CO2 hydrogenation reactions (reverse water-gas shift, 
methanation, and methanol production) allows us to rationalize how reaction mechanisms and 
catalytic performances (i.e., activity and selectivity) change with the catalyst composition, paving the 
way toward the design and nano-engineering of bi-metallic and SAA catalysts. On top of that, for the 
different materials under analysis, we evaluate the contribution of the different reaction paths 



 
(reaction mechanism in Figure 1a) and active sites (crystal facets in Figure 1b), and we identify the 
energies of adsorbates and elementary steps that limit the catalytic performances of each material. 
 
Figure 1. (a) Reaction mechanism of CO2 hydrogenation to CO, methane, and methanol. (b) 
Nanoparticle shape and crystal facets considered in the study, corresponding to catalyst nanoparticles 
with a diameter of about 2 nm. 
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