

Iron-catalyzed cooperative red-ox mechanism for the simultaneous conversion of nitrous oxide and nitric oxide

Filippo BUTTIGNOL^{1,2}, Jörg W. A. FISCHER³, Alberto GARBUJO^{4,*}, Pierdomenico BIASI⁴, Gunnar JESCHKE⁵, Oliver KRÖCHER^{1,2} and Davide FERRI¹

¹Paul Scherrer Institut (PSI), Center for Energy and Environmental Sciences, 5232 Villigen, Switzerland.
²École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
³ETH Zurich, Laboratory of Physical Chemistry, 8093 Zurich, Switzerland.
⁴Casale SA, Basic Research Department, 6900 Lugano, Switzerland.
a.garbujo@casale.ch*

Significance and Relevance

Our work demonstrates i) that the simultaneous Selective Catalytic Reduction of N_2O and NO (N_2O -NO-SCR) is a feasible and promising strategy for concomitant conversion of these pollutants, ii) that dynamic *operando* spectroscopic experiments are essential to extract valuable molecular insights and draw reliable mechanistic considerations and iii) that the reactivity of Fe centers in Fe-exchanged zeolites can be disentangled.

Preferred and 2nd choice for the topic: Automotive and stationary emission control / Fundamental advances in understanding catalysis Preferred presentation: Oral preferred

Introduction and Motivations

The individual abatement of nitrous oxide (N₂O) and nitric oxide (NO) has received tremendous scientific attention owing to their effects on human health and the environment. Differently, their concomitant conversion under selective catalytic reduction (SCR) conditions was far less investigated despite being crucial to control emissions from NH₃ internal combustion engines and from industrial plants devoted to the production of caprolactam as well as nitric and adipic acids.¹ In order to explore the feasibility of the combined SCR of N₂O and NO by NH₃ (N₂O-NO-SCR), to rationalize its reaction mechanism and to isolate the reactivity of active Fe centers in a commercial Fe-exchanged zeolite catalyst (Fe-FER), we monitored the red-ox processes and the dynamics of adsorbed species combining catalytic and transient spectroscopic experiments employing the modulated excitation (ME) approach.²

Materials and Methods

The Fe-FER catalyst was provided by CASALE SA.³ Activity tests were conducted between 200 and 500 °C in a feed of 500 ppm NO, 500 ppm NH₃, 3 vol% O₂ and 0.3 vol% H₂O/N₂ with no N₂O (NO-SCR) or 300 ppm N₂O (N₂O-NO-SCR). N₂O conversion was also monitored under reference conditions of 300 ppm N₂O/N₂ in i) N₂ ii) 500 ppm NO/N₂ and iii) 500 ppm NH₃/N₂. Reactants and products were analyzed using an FTIR spectrometer. Equivalent *operando* X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR) and infrared spectroscopy in diffuse reflectance mode (DRIFTS) experiments were performed by repeatedly adding or cutting-off 1000 ppm NH₃ + 3 vol% O₂/Ar at 400 °C. An on-line mass spectrometer (MS) monitored the gas concentrations.

Results and Discussion

Catalytic experiments indicated enhanced NO conversion above 300 °C in presence of N₂O. The onset of this beneficial effect of N₂O coincided with the on-set of N₂O conversion under N₂O-NO-SCR conditions, which also provided highest N₂O conversion compared to reference conditions. Timeresolved XAS spectra (Fe K-edge) showed a shift of the absorption edge towards high energy upon N₂O addition to the NO-SCR feed (Fig. 1a). The spectra obtained by phase sensitive detection,⁴ showed an increased contribution of the pre-edge associated with Fe³⁺ species (7115 eV) at the expenses of Fe²⁺

thus indicating a higher average oxidation state in the presence of N₂O (Fig. 1b). The complementary EPR spectra demonstrated that this phenomenon is related to the Fe²⁺/Fe³⁺ oxidation of monomeric Fe centers in β- and γ-cationic positions (Fe_β and Fe_γ) possessing a distorted square planar and a tetrahedral coordination, respectively (Fig. 1c),⁵ and which are also kept in a reversible red-ox active state during N₂O-NO-SCR (Fig. 1d). Reference experiments showed that this reversible red-ox dynamics occurs because of their involvement in processes of N₂O activation (Fe_β) and NO oxidative transformation (Fe_γ). Equal phase-resolved DRIFTS experiments (Fig. 1f) revealed the formation of Fe_β³⁺-OH and simultaneous consumption of NO adsorbed on Fe_γ²⁺ during N₂O addition. Enhanced consumption of NH₃ adsorbed on Brønsted sites (NH_{3,BAS}) also occurred, but was delayed compared to the kinetics of the Fe_γ²⁺-NO and Fe_β³⁺-OH signals.

The combination of these results enables to propose the following rationale: i) N₂O is activated on square planar isolated Fe_{β}^{2+} sites in form of Fe_{β}^{3+} -OH, ii) Fe_{γ}^{2+} -NO species drives utilization of Fe_{β}^{3+} -OH, promoting iii) the Fe_{β}^{3+} -OH/ Fe_{β}^{2+} red-ox transition and the oxidative activation of Fe_{γ}^{2+} -NO to Fe_{γ}^{3+} -HONO. Finally, iv) Fe_{γ}^{3+} -HONO is reduced to Fe_{γ}^{2+} by reactive NH_{3,BAS} producing N₂ and water through NH₄NO₂ and closing the catalytic cycle.²

Figure 1. Averaged time-resolved (a, c, e) and phase-resolved (b, d, f) operando XAS (a, b), EPR (c, d) and DRIFT (e, f) spectra of Fe-FER during pulses of 1000 ppm N₂O/Ar in 1000 ppm NO, 1000 ppm NH₃ and 3 vol% O_2 /Ar at 400 °C. The coloured spectra in b), d) and f) serve to guide the eye. The red spectrum in f) emphasizes kinetic differences.

References

- 1. S-J. Lee, R. Soo, K. Byung-Moon, M. Seung-Hyun, Int. J. Greenh. Gas Control. 2011, 5, 167.
- 2. F. Buttignol, J.W.A. Fischer, A. H. Clark, , et al., M. Elsener, A. Garbujo, P. Biasi, I. Czekaj, M. Nachtegaal, G. Jeschke, O. Kröcher and D. Ferri, *Nat. Catal.* **2024**
- 3. F. Buttignol, D. Rentsch, I. Alxneit, A. Garbujo, P. Biasi, O. Kröcher, D. Ferri, *Catal. Sci. Technol.* **2022**, *12*, 7308.
- 4. A. Urakawa, T. Burgi, A. Baiker, Chem. Eng. Sci. 2008, 63, 4902.
- 5. E. Berrier, O. Ovsitser, E. Kondratenko, M. Scwidder, W. Grüner, A. Brückner *J. Catal.* **2007**, *249*, 67.

Acknowledgements

We thank the Paul Scherrer Institut and Casale SA for funding and the Paul Scherrer Institut for beamtime allocation at the SuperXAS beamline (Swiss Light Source). We are grateful to Poland's high-performance Infrastructure PLGrid ACK Cyfronet AGH for providing computer facilities and support within computational grant plgzeodesign24.