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Significance and Relevance 
This study establishes a robust, data-efficient framework for simulating catalytic processes under 

realistic conditions. This allowed us to study for the first time ammonia decomposition on FeCo via 
molecular dynamic (MD) simulations, revealing its reaction mechanism on the atomistic scale. Our 
simulations provide a rational explanation of the promoter effect of alloying, laying the foundation for 
a knowledge-based design of sustainable catalysts for H2 production from ammonia.  
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Introduction and Motivations 
Ammonia is considered a potential hydrogen vector due to its high hydrogen content and ease of 

transportation and storage. However, on-site carbon-free hydrogen production requires the 
development of efficient methods of hydrogen extraction from ammonia. To this end, iron-based 
catalysts are widely employed in the thermocatalytic cracking of ammonia. Despite more than a 
century of studies, the cracking reaction steps are still not well characterized due to the operative 
temperature conditions (700-800 K).1 Several DFT-based theoretical studies have elucidated the 
process at T=0 K. However, the resulting reaction profiles do not reflect the operando conditions and 
do not consider the dynamic behavior of the surface catalyst. In fact, surface dynamics play a critical 
role in heterogenous catalysis, explaining activity and long-term stability.2 Our recent studies on 
ammonia decomposition on Fe at the operando temperature via machine learning (ML) based MD 
reveal the complexity of this process and the non-trivial effects of finite temperature description. For 
the dehydrogenation steps, we found a unique reaction mechanism over an ensemble of reaction 
pathways3. Furthermore, in combination with experiments, we rationalized the early stage of Fe(110) 
nitridation under ammonia decomposition4. In this study, we focus on FeCo alloy, which has recently 
been proposed as an alternative to Fe as a catalyst for ammonia decomposition, given its superior 
activity and stability5. Catalytic cracking of NH3 on FeCo has never been studied at the atomistic level, 
even with static methods, given the combination of complexity and high computational cost. To do so, 
we developed a new protocol to construct potential MLs in a data-efficient manner, in addition to the 
use of advanced dynamics simulations. This allowed us to study the complete reaction at operating 
temperatures at a fraction of the cost, revealing the microscopic origin of the promoter effect of 
alloying iron with cobalt. 
 

Materials and Methods 
To build our interatomic ML-potential we employed a two-stage protocol to achieve data efficiency 

while delivering high accuracy along the reaction pathways. In the exploratory phase, uncertainty-
aware flooding simulations were conducted using Gaussian Processes (GPs) to identify reactive 
configurations. Enhanced sampling techniques, such as On-the-Fly Probability Enhanced Sampling 
(OPES), facilitated the efficient exploration of transition states and metastable configurations under 
high-temperature conditions. The convergence phase utilized equivariant graph neural networks 
(GNNs) to consolidate the dataset and provide a uniformly accurate potential. A novel Data-Efficient 
Active Learning (DEAL) algorithm was developed to refine the training dataset further. DEAL integrates 
query-by-committee uncertainty estimates from GNNs with the assessment of local environment 
similarity via GPs to systematically select a subset of relevant configurations to be recalculated at the 
DFT level. This ensures accurate modeling of the potential energy surface with minimal demand for 
QM calculations. 



 

 
Results and Discussion 

Our workflow required approximately 1,000 DFT calculations per reaction step; a reduction of more 
than 20-fold compared to previous studies3,4,6,7. The DEAL approach systematically identified non-
redundant configurations, ensuring uniform accuracy along reactive pathways while limiting the 
training set size. 

Enhanced sampling simulations revealed complex, multi-channel reaction mechanisms for 
ammonia dehydrogenation, including NH3 → NH2 + H, NH2 → NH + H, and NH → N + H steps. Free 
energy profiles were reconstructed with a sampling error of less than 20 meV, revealing an ensemble 
of transition states and reaction pathways for each with similar barriers but distinct geometric 
configurations. These simulations captured the dynamic evolution of FeCo active sites under operando 
conditions, offering microscopic insights into surface-catalyzed reactions. 

More importantly, the ML-based simulations revealed the microscopic origin of the higher catalytic 
activity of the alloy with respect to the pure Fe catalyst, which is both a lowering in the activation 
energy of the rate-limiting step (nitrogen recombination) and a higher resistance to nitridation (Fig 1). 
The latter is originated from a combination of multiple aspects, revealing the necessity of a full dynamic 
description. The theoretical results were validated by experimental evidence of no bulk nitride 
formations in FeCo during ammonia decomposition, contrary to what was observed for Fe. 

 

 
Figure 1 Free energies of the most relevant process on Fe and FeCo, obtained from MD simulations at 
700K with a surface coverage of 40% (monolayer coverage, N to H ratio 1:3). On the left of the dotted 
line, the free energy barrier of the rate-limiting step while and on the right the free energy nitridation 
related process. These explain both the superior catalytic activity of FeCo with respect to Fe and its 
greater stability against nitridation. 
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