

H_2 -SCR over 0.3%Pt/5%SiO₂-Al₂O₃ catalyst: investigations in the reaction pathways.

Amira BEN ATTIA¹, Fabien CAN¹, Xavier COURTOIS^{1*}

¹ IC2MP, Université de Poitiers-CNRS, 4 rue Michel Brunet TSA 51106 86073 Poitiers Cedex 9, France. * xavier.courtois@univ-poitiers.fr

Significance and Relevance

The pathways and mechanistic aspects of the H₂-SCR on platinum-based catalysts remain a topic of debate. In this study, we investigated the reaction pathways over a low-loaded supported platinum catalyst depending on the temperature. Our results indicate that NO decomposition occurs mainly below 100 °C, predominantly yielding N₂O. The formation of NH₃ is observed from 70 °C and the NH₃-SCR reaction can occur, but only in the 70-120 °C temperature range, leading mainly to N₂O. Importantly, at temperatures exceeding 120 °C, catalytic activity is mainly driven by the NH₃ oxidation by O₂. To our knowledge ammonia oxidation has not previously been recognized as the main reaction in H₂-SCR reaction pathways.

Preferred topic: Automotive and stationary emission control.

2nd choice for the topic: Air cleaning and combustion. Preferred presentation: **Oral preferred** or Short Oral.

Introduction and Motivations

 H_2 internal combustion engine (H_2 -ICE) could serves as a viable clean solution for heavy vehicles and could significantly contribute to decarbonizing the transport sector. However, a deNO_x treatment may be necessary. One attractive approach is to implement a H_2 -SCR after-treatment system. According to the literature, the H_2 -SCR mechanism can be divided into two distinct routes, namely (i) the NO adsorption/dissociation based on a Langmuir-Hinshelwood mechanism and (ii) the oxidation– reduction pathways.¹Regardless of the mechanism considered, a typical volcano shaped curve in NO_x conversion is obtained. This phenomenon occurs because the competitive H_2 combustion reaction is intensifies as the temperature rises, particularly above 150 °C on precious metals.

The oxidation–reduction mechanism the NO reduction process involves complex reactions between gaseous NO or weakly adsorbed oxidized species (NO⁻, NO₂⁻, NO₃⁻) and adsorbed reduced N-compounds (NH_x).² In this study, we investigate the reaction pathways of the H₂-SCR over a low-loaded platinum-based catalyst, with a special focus on (i) the role of NH₃ as possible intermediate species and (ii) the origin of undesired N₂O emission.

Materials and Methods

The 0.3%Pt/5%SiO₂-Al₂O₃ catalyst was prepared using a silica-alumina support provided by Sasol and previously hydrotreated under synthetic air with 10 % H₂O at 700 °C, 4 h (296 m² g⁻¹). Platinum was introduced *via* wet impregnation using Pt(NH₃)₂(NO₂)₂ salt. After drying, the resulting powder was treated under N₂ at 700 °C, 4 h and finally hydrotreated at 600 °C, 4 h (Pt dispersion: 35 %).

The catalytic behaviour of the sample (30 mg) was investigated using various reaction mixtures, as depicted in Table 1. The feed gas and effluent compositions were monitored using online MKS 2030 Multigas infrared analyser for NO, NO₂, N₂O and NH₃. Additionally, a Pfeiffer Vacuum mass spectrometer was used to record the H₂ signal. The N₂ formation was calculated based on the assumption that only NO, NO₂, N₂O and NH₃ were formed as N-compounds.

Table 1. Reactional mixtures depending on the type of catalytic test (total flow: 150 mL min⁻¹).

Catalytic test	NO (ppm)	NH₃(ppm)	H ₂ (%)	O ₂ (%)	N ₂
H ₂ -SCR	400	-	1	2	balance
NO+H ₂ reaction	400	-	1	-	balance
NH₃-SCR	400	400	-	2	balance
NH ₃ oxidation	-	400	-	2	balance

Results and Discussion

As expected, the NO_X conversion in H₂-SCR conditions (Fig. 1A) showed a volcano-shaped curve. The conversion started below 50 °C, with N₂O as main product. Interestingly, despite a high WHSV of 300 L h⁻¹/g_{cata} (30 mg catalyst, total flow rate of 150 mL min⁻¹), some ammonia was detected from 70 °C, with a maximum yield recorded near 100 °C. At this temperature complete NO_X conversion was achieved, with N₂ emerging as the main reduction product. At higher temperatures, a secondary N₂O emission was observed. To explain these complex profiles, especially the role of NH₃ as possible intermediate and the origin(s) of the undesired N₂O emission, various reaction mixtures were used to study the NH₃ formation and its reactivity.

Removing oxygen (NO+H₂ reaction, Fig. 1B) had no influence in the 50-100 °C temperature range, indicating that the actives sites were mainly covered by NO_x species, with N₂O as the main reaction product (accordingly, H₂ conversion was shifted to lower temperature when NO was removed from the reaction mixture, results not shown). The NH₃ emission started near 70 °C, consistent with the H₂-SCR conditions (Fig. 1A). Considering the ammonia reactivity, the NH₃-SCR (Fig. 1C) can occur from 70 °C, exhibiting significant activity from 100 °C. However, this reaction within the H₂-SCR process can only proceed when both NH₃ and NO_x are available simultaneously, which is possible only in a very narrow range (Fig 1A, also confirmed varying the involved catalytic mass from 5 to 200 mg). Moreover, the distribution of N₂ and N₂O in the 100-350 °C temperature range in NH₃-SCR did not match with the results observed in H₂-SCR (Fig. 1A). On the contrary, the second N₂O emission wave observed in H₂-SCR (Fig. 1D). An overview of the H₂-SCR reaction pathways depending on the temperature is proposed in Fig. 1E, highlighting the NH₃ reaction routes.

Figure 1: 0.3% Pt/5%SiO₂-Al₂O₃ catalytic behavior (C: conversion; Y: yield) depending on the reaction mixture reported in Table 1 and proposed H₂-SCR reaction scheme depending on the temperature.

References

- 1. Z. Liu, J. Li, S. Ihl Wooc, Energy Environ. Sci. 2012, 5, 8799-8814.
- 2. R. Burch, M. D. Coleman., J. Catal. 1999, 188, 69-82.

Acknowledgements

The authors gratefully acknowledge the French National Agency for Research (ANR, H to Clean Project, ref. ANR-21-CE05-0012-01), the Regional Council of Nouvelle Aquitaine (DeNOx-DeCarb project, AAPR2022-2021-17214210), the French Ministry of Research and the European Regional Development Fund (ERDF) for financial supports.