

Enhancing Low-Temperature CO₂ Methanation: The Role of Praseodymium Oxide in Ni-Based Catalysts

Yanggeun¹, Junseo Park¹, Sung Bong Kang^{*,1}

¹School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea * sbkang@gist.ac.kr

Significance and Relevance

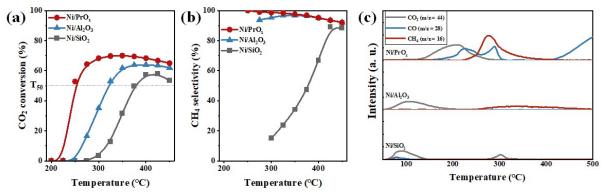
The Ni/PrO_x (Nickel/Praseodymium oxide) catalyst developed in this study effectively achieve crucial challenge of thermodynamic limitation in CO₂ methanation by enhancing CH₄ selectivity and CO₂ conversion rates at low temperature ranges (250 to 350 °C). Through the unique oxygen mobility and formation oxygen vacancies property of PrO_x, CO₂ activation pathway are significantly improved. This approach overcomes the high kinetic barrier for low temperature CO₂ activation. Our findings demonstrate the potential of PrO_x utilization for development enhanced low temperature performance catalyst by experimental validation.

Preferred and 2^{nd} choice for the topic: 1st CO_2 utilization and recycling, 2nd H_2 storage and transportation, green H_2 production, hydrogen vectors Preferred presentation: Oral preferred or Short Oral

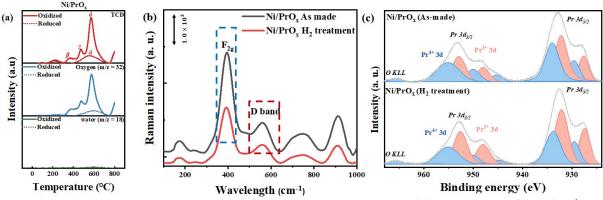
Introduction and Motivations

Research on nickel-based CO₂ methanation catalyst has been actively studied due to their relative advantage of cost-effectiveness rather than noble metals. However, the nickel catalysts require high temperature (above 300 °C) for achieving significant CO₂ methanation activity. ¹ This limitation is due to the high kinetic barrier of CO₂ activation step, which require suitable catalyst surface properties for enhancing CO₂ activation.² Based on the theoretical background, we aimed to enhance low temperature activity by PrO_x based nickel catalyst which could provide electron donor sties suitable for improved CO₂ activation.

Results and Discussion


In Fig. 1 activity test comparing with conventional support based catalysts, Ni/PrO_x shows exceptional low temperature activity. The trend in T₅₀ (the temperature at which 50% of CO₂ is converted) was observed as follows: Ni/PrO_x (253 °C) < Ni/Al₂O₃ (322 °C) < Ni/SiO₂ (379 °C). Also, the highest CH₄ selectivity on entire temperature range was observed. This result indicates that PrO_x support enhance low temperature activity and CO₂ hydrogenation pathway compared to other conventional supports in same nickel loading condition. The exceptional activity of Ni/PrO_x is closely associated with Its superior CO₂ activation ability in low temperature range, as observed in Fig. 1 (c). The peak observed on 211 °C indicates that Ni/PrO_x surface was appropriate for the direct CO₂ decomposition to CO at low temperatures (CO₂ \rightarrow CO + O^{*}). The direct CO route for CO₂ methanation on Ni/PrO_x support present appropriate reaction pathway of CO₂ hydrogenation to CH₄. This enhancement of CO₂ activation behavior is clearly associated to surface chemical property, specifically electron donor properties.

To elucidate the correlation between improvement of CO_2 activation and PrO_x support properties, we focused on structural oxygen mobility and vacancies formation behavior of PrO_x . The structural oxygen mobility induces evacuation of structural oxygen and provide abundant oxygen vacancies for electron donor for activating CO_2 to CO and O*. Fig. 2 presents our analytic characterizations for elucidating PrO_x oxygen mobility property. In Fig. 2 (a), the structural oxygen evacuation profile result suggests high oxygen mobility of Ni/PrO_x and evacuation behavior in reduction condition. The oxygen mobility, as a property that induce superior oxygen vacancies formation, was investigated through Raman spectroscopy and Pr 3d XPS results. Through quantitative analysis of results in Fig. 2 (b), I_D/I_{F2g}



ratio (intensity ratio of the Defects band to the F_{2g} band), from 0.28 to 0.33 respectively, was observed. This result indicates that PrO_x was transformed oxygen deficiency oxide phase which has abundant electron donor sites. In Fig. 2 (c), Pr 3d XPS clearly supported the electron properties of Ni/PrO_x. The $Pr3^+/Pr^{4+}$ ratio of Ni/PrO_x increase from 0.85 to 0.96 respectively according to H₂ treatment. This results indicates that Ni/PrO_x surface has superior oxygen vacancies formation and high electron donating properties induced by oxide phase transformation.

Through characterization and activity test, we clearly observed exceptional low temperature activity and abundant oxygen vacancies formation induced by PrO_x support effects on surface of catalyst. This combined results suggests that the PrO_x provides suitable chemical properties to reduce the kinetic barrier of CO_2 activation at low temperature by formation oxygen vacancies which serve as electron donor sites for CO_2 adsorption and activation. This advantage in the reaction mechanism directly influenced on enhancement of low temperature catalytic activity of Ni/PrO_x. In conclusion, our study demonstrates the potential of PrO_x in enhancing low-temperature CO_2 methanation by comprehensive experimental analysis.

Fig. 1. (a) CO_2 conversion, (b) CH_4 selectivity and (c) CO_2 -TPSR profile of Ni/PrO_x, Ni/Al₂O₃ and Ni/SiO₂ catalysts.

Fig. 2. (a) Structural oxygen evacuation, (b) Raman spectroscopy and (c) Pr 3d XPS profiles of Ni/PrO_x catalyst.

References

- 1. L. Shen, J. Xu, M. Zhu, Y.-F. Han, ACS Catal. 2020, 10(24), 14581-14591.
- 2. T. Zhang, W. Wang, F. Gu, W. Xu, J. Zhang, Z. Li, T. Zhu, G. Xu, Z. Zhong, F. Su, *Appl. Catal. B: Environ.* **2022**, *312*, 121385-121400.

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIT) (No. 2021R1C1C1005404, 2021R1A5A1028138).