

Low Temperature-Water Gas Shift Reaction Using Perovskite-type Oxide Catalyst Containing Cerium Ion

Hidenori YAHIRO^{1*}, Noa YAMAGUCHI¹, Satoshi TOSHIOKA¹, Hiroyuki YAMAURA¹, Syuhei YAMAGUCHI¹, Anna Paola PANUNZI², Leonardo DURANTI², Elisabetta Di BARTOLOMEO² ¹Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan ²Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133 Rome, Italy * hyahiro@ehime-u.ac.jp

Significance and Relevance

The perovskite-type oxides containing Ce ion were successfully prepared by the thermal decomposition of heteronuclear metal cyano complexes. The present of trivalent Ce ion at A-site of perovskite-type oxide (ABO₃) was confirmed by several techniques. Ni/La_{0.7}Ce_{0.3}FeO₃ catalyst showed higher catalytic activity for the reverse water gas shift reaction (CO₂ + H₂ \neq CO + H₂O) at low temperature than Ni/CeO₂ catalyst.

Introduction and Motivations

It is well known that perovskite-type oxide catalysts (ABO₃) are highly active in complete oxidation reactions such as CO and PM oxidation. It has been reported that the catalytic activity can be greatly enhanced by substituting a part of the A-site metal ions with other metal ions. For example, partial substitution of Sr ions in LaMnO₃ improved the activity of propane oxidation¹. In some cases, a valence

change of metal ions occurs during the catalytic reaction; the Pd^{2+} ions are reported to exist at the lattice points of perovskite-type oxides in an oxidizing atmosphere and exit to the surface as metal in a reducing atmosphere. In this study, we focus on Ce ions, which have redox properties of +3/+4 depending on the oxygen partial pressure. This study reports a new preparation of LaFeO₃ catalysts with partial substitution of Ce ions and the reverse water gas shift reaction (RWGS reaction) using this catalyst.

Figure 1. Structures of (a) heteronuclear metal cyano complex and (b) perovskite-type oxide

Materials and Methods

We have reported that ABO₃ catalyst can be prepared by thermal decomposition of heteronuclear cyano metal complex precursor (CN method)^{2, 3}. This new method is expected to yield ABO₃ catalyst with high surface area and high homogeneity due to the similarity of precursor and product structures (Fig. 1). The heteronuclear metal cyano complexes, AA'[B(CN)₆] \cdot nH₂O (A = lanthanide metal ion, A' = cerium ion, B = iron or cobalt ion), were prepared and calcined at 500-1000 °C to yield A_{1-x}A'_xBO₃ catalyst. The resulting catalysts were characterized by XRD, BET, H₂-TPR, XAFS (XAS), EIS, and ASR methods. The RWGS reaction was performed under the following reaction condition: CO₂ conc. = 2.5%, H₂ conc. = 10%, He balance, total flow rate = 100 cm³min⁻¹, catalyst weight = 0.2 g). The product gas was analyzed by gas chromatography (TCD).

Results and Discussion

Figure 2 shows XRD patterns of La_{1-x}Ce_x[Fe(CN)₆] \cdot nH₂O calcined at 700 °C for 1 h. Two sets of peaks assigned to perovskite-type structure ($0 \le x \le 0.3$) and fluorite-type structure ($0.15 \le x \le 0.30$) were observed. All XRD peaks due to the perovskite-type structure shifted to higher angles with increasing x. This means that the lattice constant of the perovskite-type oxide decreases with increasing x, suggesting that Ce ions are incorporated into the lattice of the perovskite-type oxide. Hereafter, La_{1-x}Ce_x[Fe(CN)₆] \cdot nH₂O calcined at 700°C is denoted as La_{1-x}Ce_xFeO₃(700), but the sample with more Ce ions contains CeO₂ other than perovskite-type oxides.

H₂-TPR measurements were conducted for La_{1-x}Ce_x[Fe(CN)₆] •nH₂O calcined at 700 °C for 1 h. The results are shown in Fig. 3. No reduction peak was observed for the sample with x = 0 (LaFeO₃) up to 900 °C. The reduction peaks of samples with $0.05 \le x \le 0.30$ were observed in the temperature range of 200-500 °C. The intensity in reduction peak increased with increasing x, indicating that the reduction of sample was accelerated by Ce ion. The reduction peak of La_{1-x}Ce_x[Fe(CN)₆] •nH₂O ($0.05 \le x \le 0.30$) calcined at 700 °C was very similar to that La_{1-x}Sr_xFeO₃₋₆⁴, suggesting that perovskite-type oxide partially substituted by Ce ion possesses the oxidation ability like that partially substituted by Sr ion. The result of X-ray absorption spectroscopy suggests that Ce ion exists as trivalent ion in bulk of perovskite-type oxide.

Figure 2. XRD patterns of $La_{1-x}Ce_x[Fe(CN)_6] \cdot nH_2O$ calcined at 700 °C for 1 h

Figure 4 shows the catalytic activity of La₁₋ _xCe_xFeO₃(700) for RWGS reaction. The Ni/CeO₂, catalyst⁵ showed low activity below 400 °C. On the other hand, LaFeO₃ showed relatively high catalytic activity, and the catalytic activity was slightly enhanced by Ni addition. La_{0.7}Ce_{0.3}FeO₃(700) catalyst is not so active for RWGS reaction; however, its catalytic activity was extremely improved by the addition of Ni. It was found that the activity of Ni/La_{0.7}Ce_{0.3}FeO₃(700) catalyst was 10 times larger than that of Ni/CeO₂ catalyst (390 °C).

References

- T. Nitadori, S. Kurihara, M. Misono, J. Catal., 1986, 98, 221.
- 2. M. Asamoto, H. Yahiro, *Catal. Surv. Asia* **2009**, *13*, 221.
- 3. M. Asamoto, M. Hino, S. Yamaguchi, H. Yahiro, *Catal. Today* **2011**, *175*, 534.
- 4. H. Chang, E. Bjørgum, O. Mihai, J. Yang, H. L. Lein, T. Grande, S. Raaen, Y.-A. Zhu, A. Holmen, D. Chen, ACS Catal. **2020**, *10*, 3707.
- 5. Y. Liu, Z. Li, H. Xu, Y. Han, Catal. Cummun. 2016, 76, 1.

Acknowledgements

The authors sincerely thank Prof. Nishibori (Tohoku University) for measuring X-ray absorption spectroscopy. This work was supported by JSPS KAKENHI Grant Number JP22K04831.

Figure 3. XRD patterns of $La_{1-x}Ce_x[Fe(CN)_6] \cdot nH_2O$ calcined at 700 °C for 1 h

Figure 4. Catalytic activities for RWGS reaction over $La_{1-x}Ce_xFeO_3(700)$ with and without Ni loading