
 

Asymmetric ketones intermediates by cross-ketonization 
Jacopo DE MARON*,1, Gaetano Maria D’ONOFRIO1, Tommaso TABANELLI1, Andrea FASOLINI1, Francesco 

BASILE1, Fabrizio CAVANI1.  
1University of Bologna, “Toso Montanari” Industrial Chemistry Dept., Viale Risorgimento 4, Bologna, Italy. 

* Jacopo.demaron2@unibo.it 
 

Significance and Relevance 
This work demonstrates that the selective cross-ketonization of acid/asters can be exploited as a 
general synthetic approach to obtain valuable asymmetric ketonic intermediates with a continuous 
catalytic gas-phase process, thus avoiding the drawbacks of conventional homogeneously catalyzed, 
batchwise synthetic methods in the liquid-phase. This method achieved conversions of the limiting 
reactants between 75-85 %, selectivities in respect to the limiting reactants between 84-95 %, and 
space-time yields between 0.131-0.159 h-1. 
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Introduction and Motivations 
The usefulness of ketonization for the valorization of biomass-derived carboxylic acids (CA) is widely 
recognized. For instance, it has been recently proposed as a viable way to transform the volatile fatty 
acids (VFAs, C4-C8) obtained via fermentation of wet-waste (e.g., food waste, sewer sludge, animal 
manure) into sustainable aviation fuel (SAF) precursors1. Ketonization is also a promising way to 
produce valuable bio-based wax precursors by coupling the fatty acids (FAs) found in waste animal fat 
or vegetable oils (C12–C18)2. However, despite the recent advance in ketonization-based processes to 
produce renewable fuels and oleochemicals, the full potential of this reaction has yet to be suitably 
exploited for the selective synthesis of high added-value chemical intermediates for the 
pharmaceutical, cosmetic and food industry. As of now, asymmetric ketones containing aromatic 
moieties are mainly produced by liquid-phase batch processes that co-produce significant amounts of 
waste (e.g., Friedel-Crafts, Heck, Suzuki, Grignard, Claysen-Schmidt, oxidations with peroxides)3, while 
the examples of selective cross-ketonization of CAs or esters are relatively scarce4. Recently, the 
synthesis of acetyl furan (AF, a food additive and intermediate in the synthesis of antibiotics) via cross-
ketonization between methyl 2-furoate (2-MF) and acetic acid (AA) (both obtainable from renewable 
resources) was proposed as a more sustainable alternative to conventional synthetic methods5. 

 

Figure 1 comparison between the gas-phase cross-ketonization pathway towards acetyl furan and the 
traditional Friedel-Crafts synthesis in the liquid-phase. 

Starting from these seminal results, in this work the substrate scope of the gas-phase cross-
ketonization approach was further demonstrated by targeting several valuable asymmetric ketones 
intermediates widely used as chemical intermediates, flavors/fragrances or pharmaceutical precursors 
(e.g., acetophenone, 4-methyl acetophenone, propiophenone, valerophenone, dihydrochalcone). 

Materials and Methods 
Catalytic runs were carried out in a gas-phase plant operating at atmospheric pressure over 1 cm3 of 
catalyst pellets (30-60 mesh). Reactants were mixed in the desired molar ratio and fed with a 
volumetric pump into a stainless-steel line to be vaporized before the catalytic bed. The LHSV and the 
flow of N2 carrier were adjusted to obtain the desired molar fractions in the gas-phase maintaining a 



 

contact time t (at reaction temperature) = 1 s. The effluent from the reactor was condensed in a cold 
trap filled with acetonitrile and kept at 0 °C and analyzed offline with an Agilent 5890 Series II GC 
instrument (internal standard = dodecane, capillary column: DB-1701, 25 m × 530 µm × 1.05 µm). The 
effluent from the cold trap was analyzed online by means of GC-TCD (columns: Agilent CP-Molsieve 5A 
capillary column, 25 m × 530 µm × 50 µm and an Agilent CP-Silica PLOT, 30 m × 530 µm × 6 µm). Ceria 
(CeO2, 193 m2/g) was a commercial reference material (Rhodia Actalys HAS 5) and was calcined at 5 
°C/min up to 400 °C for 4 h before use; zirconia (ZrO2, 55 m2/g), ceria–zirconia (Ce/Zr/O, 123 m2/g) and 
lantania (La2O3, 26 m2/g) were synthesized by means of precipitation and co-precipitation, adapting a 
method from the literature6, and calcined at 5 °C/min up to 550 °C, 400 °C, and 750 °C respectively. 
Catalysts were characterized by means of BET, XRD, TGA, Raman and TPR. 

Results and Discussion 
Catalytic runs were initially carried out at 350 °C and with a contact time equal to 1 second by 
vaporizing the feed in N2 carrier to obtain a total organic concentration of 2 % in the gas-phase. ZrO2 
exhibited a higher catalytic performance and stability with respect to other well-known ketonization 
catalysts (e.g., CeO2, Ce/Zr/O and La2O3) in the synthesis of dihydrochalcone (HC) from ethyl 3-phenyl 
propionate (EPP) and ethyl benzoate (EB), in analogy with previous results obtained in the coupling of 
methyl 2-furanoate and acetic acid towards acetyl furan5. A detailed investigation of the process 
condition showed that the main parasitic reaction, i.e. the undesired homo-ketonization of EPP 
towards 1,5-diphenyl propanone, could be avoided either by increasing the EB/EPP molar ratio in the 
feed or by increasing the reaction temperature from 350 °C to 400 °C; the latter finding could be 
explained by the higher reactivity of EB at higher temperature. Once optimal reaction conditions were 
identified for the synthesis of acetyl furan (model aryl-alkyl ketone) and dihydrochalcone (model aryl-
alkylaryl ketone), the synthetic method was scaled up to a feed containing 20 % total organic reactants 
and extended to the synthesis of the valuable compounds listed in Figure 2.  

 

Figure 2 Substrate scope of the cross-ketonization synthetic approach. 
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