

TiO₂/QDs nanocomposites for sustainable reactions: synthesis and characterization

<u>Francesca S. FREYRIA¹</u>, Najeebullah CHANNA¹, Francesco PELLEGRINO², Jenny G. VITILLO,³ Nicoletta DI TARANTO⁴, Michele Bucchieri^{1,5}, Nicola BLANGETTI¹, Barbara BONELLI¹ ¹Department of Applied Science and Technology and INSTM-Unit of Torino Politecnico. Corco Duca deali

¹Department of Applied Science and Technology and INSTM-Unit of Torino Politecnico, Corso Duca degli Abruzzi 24, Politecnico di Torino,10129 Torino, Italy

² Department of Chemistry, University of Torino, via Giuria 5, 10125 Torino, Italy

³ Department of Science and High Technology and INSTM, Università degli Studi dell'Insubria, Via Valleggio 9, I-

22100 Como, Italy

⁴Department of Chemistry, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy ⁵Departement of Chemistry, Biology and Biotechnologies- Università degli Studi di Perugia

* e-mail francesca.freyria@polito.it

Significance and Relevance

Sunlight reaching Earth each hour could meet global annual energy needs if were captured and stored affordably. Drawing inspiration from nature, this study investigates TiO_2 polymorphs enhanced with heavy-metal-free quantum dots (QDs) for two sustainable reactions: CO_2 reduction to solar fuels and biomass valorization. By coupling TiO_2 , a well-studied photocatalyst, with non- toxic QDs, known for their excellent optoelectronic properties to harvest and deliver solar energy, this research aims to explore potential photocatalytic synergies between these nanoscale semiconductors. Preliminary experimental and modeling results indicate that selectivity and yield vary depending on the TiO_2 polymorphic type and QD concentration.

Preferred and 2nd choice for the topic: Photocatalysis and photoelectrocatalytic approaches, solar energy utilization

Green chemistry and biomass transformation, renewable resources conversion

Preferred presentation: (Oral only / Oral preferred or Short Oral / Poster) Oral preferred or Short Oral Introduction and Motivations

In recent decades, the twin challenges of climate change and increasing energy demands have become critical global issues. TiO_2 , known for its low toxicity and affordability, is widely used as a photocatalyst to exploit solar energy for sustainable chemical reactions. Its main drawback is its large band gap which prevents it from absorbing photons in the visible range. To address this limitation, this study explores both the presence of different TiO_2 crystalline phases—anatase, rutile, and brookite— and the coupling with copper-based quantum dots that emit in the NIR range, to enhance light absorption and photocatalytic performance.¹

Materials and Methods

TiO₂/CuInS₂ nanocomposites (TiO₂/CIS) were obtained at low temperatures without the use of template. Different titanium precursors, such as titanium tetrachloride and titanium tetraisopropoxide^{2,3}, were used to synthesize nanometric TiO₂.⁴ Sodium oxalate and sodium lactate, as chelating agents, and urea, as in situ OH⁻ source, were added to tune the polymorphs percentages. CuInS₂ quantum dots were synthesized through one-pot synthesis method in inert atmosphere.⁵ The two nanometric semiconductors were coupled in a controlled atmosphere at different temperatures.³ Characterization of the studied nanomaterials has involved either theoretical calculations or experimental techniques such as X-ray powder diffraction (XRPD), quantitative phase analysis via Rietveld refinement, diffuse reflectance (DR) UV-Vis spectroscopy, N₂ adsorption/desorption, ζ -potential measurement for electrophoretic mobility in water, X-ray photoelectron spectroscopy (XPS), and electron microscopy. Photocatalytic performance assessment has been conducted under simulated sunlight at 1 Sun intensity (100 mW/cm²).

Results and Discussion

By adjusting the chelating agents, aging time, and calcination temperature, we successfully controlled the quantity of polymorphs, allowing us to produce either single-phase or multiphase nanoscale TiO₂. These powders were coupled with CuInS₂ quantum dots (CIS-QDs) to enhance their photocatalytic activity. The influence of homo-(among the different TiO₂ polymorphs)⁶ and hetero-junctions (between TiO₂ and CIS QDs) in the photocatalytic performance of the nanocomposites has been investigated through experimental techniques coupled with Kohn-Sham density functional calculations. KS-DFT calculations were used to model the different surfaces of the titania polymorphs to quantify their influence on the work function. We have been testing these nanocomposites for two sustainable reactions: i) CO₂ conversion in solar fuels; ii) lignin conversion into fragrances. Preliminary

chromatographic analysis for CO_2 reduction revealed different amounts of C_1 and C_{2+} products, depending on the types of polymorphs present in the nanocomposite with CIS QDs. Furthermore, TiO₂/CIS nanocomposites appear to catalyze the conversion of dihydroeugenol to vanillin.

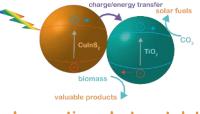


Figure 1 Sketch of the nanocomposite

References

- Freyria, F. S.; Colloidal Semiconductor Nanocrystals for Artificial Photosynthesis. In *Nanostructured Catalysts for Environmental Applications*; Piumetti, M., Bensaid, S., Eds.; Springer International Publishing, 2021; pp 214–248. https://doi.org/10.1007/978-3-030-58934-9.
- (2) Mutuma, B. K.; Shao, G. N.; Kim, W. D.; Kim, H. T. Sol-Gel Synthesis of Mesoporous Anatase-Brookite and Anatase-Brookite-Rutile TiO2 Nanoparticles and Their Photocatalytic Properties. *J Colloid Interface Sci* 2015, 442, 1–7. https://doi.org/10.1016/j.jcis.2014.11.060.
- (3) Shen, F.; Que, W.; Liao, Y.; Yin, X. Photocatalytic Activity of TiO 2 Nanoparticles Sensitized by CuInS 2 Quantum Dots. *Ind Eng Chem Res* **2011**, *50* (15), 9131–9137. https://doi.org/10.1021/ie2007467.
- (4) Freyria, F. S.; Blangetti, N.; Esposito, S.; Nasi, R.; Armandi, M.; Annelio, V.; Bonelli, B. Effects of the Brookite Phase on the Properties of Different Nanostructured TiO2 Phases Photocatalytically Active Towards the Degradation of N-Phenylurea. *ChemistryOpen* 2020, 903–912. https://doi.org/10.1002/open.202000127.
- (5) Li, L.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I. Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission. J Am Chem Soc 2011, 133 (5), 1176–1179. https://doi.org/10.1021/ja108261h.
- (6) Xu, F.; Zhang, J.; Zhu, B.; Yu, J.; Xu, J. CuInS2 Sensitized TiO₂ Hybrid Nanofibers for Improved Photocatalytic CO2 Reduction. *Appl Catal B* 2018, 230, 194–202. https://doi.org/10.1016/j.apcatb.2018.02.042.

Acknowledgements

This study was carried out within the « GREEN UP: GREENER NANOMATERIALS FOR UPCONVERSION IN PHOTOCATALYTIC APPLICATIONS» project –funded by the Ministero dell'Università e della Ricerca –within the PRIN 2022 program (D.D.104 -02/02/2022) funded by the European Union - Next Generation EU. This manuscript reflects only the authors' views and opinions and the Ministry cannot be considered responsible for them".

Agritech National Research Center and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 – D.D. 1032 17/06/2022, CN00000022). This manuscript reflects only the authors' views and opinions, neither the European Union nor the European Commission can be considered responsible for them.