

The role of vanadium in silica-supported Ru catalysts for enhanced CO₂ methanation

Plaifa HONGMANOROM¹, Damien P. DEBECKER^{*,1}

¹Institute of Condensed Matter and Nanoscience, UCLouvain, Place Louis Pasteur 1, Louvain-La-Neuve, Belgium. * damien.debecker@uclouvain.be

Significance and Relevance

We report the first investigation into the promotional effect of vanadium on CO₂ methanation performance of Ru catalysts. This study revealed that V_2O_5 plays a beneficial role in stabilizing Ru nanoparticles and preventing their aggregation. Furthermore, hydrogen spillover from Ru during H₂ reduction and CO₂ hydrogenation promotes V_2O_5 reduction, generating oxygen vacancies and thereby facilitating electron transfer to interfacial Ru sites. This enhances CO₂ activation and CO adsorption on electronically modified Ru sites and interfacial Ru sites, significantly boosting methanation activity.

Preferred topic and 2nd choice for the topic: "Fundamental advances in understanding catalysis" and "CO₂ utilization and recycling" Preferred presentation: Oral only

Introduction and Motivations

Converting CO₂ with green H₂ to produce CH₄ (CO₂ methanation) is a promising strategy to mitigate anthropogenic CO₂ emission while utilizing surplus green electricity (Power-to-Gas scenario).^{1, 2} The promoting effects of alkali, alkali earth and lanthanide metals on Ru-based methanation catalysts have been extensively studied.^{3, 4} However, little is known about the influence of transition metals – particularly vanadium – on the CO₂ methanation activity and selectivity of Ru catalysts.

Materials and Methods

The V-promoted silica materials were prepared via the aerosol-assisted sol-gel process. Tetraethyl orthosilicate, vanadium triisopropoxide, tetrapropylammonium hydroxide, and F127 surfactant were vigorously mixed to prepare the precursor solution, which was then atomized into small droplets and carried by air through the drying chamber. The dried powder was calcined at 550 °C. The loading of V was varied (x%V-SiO₂ where x = 4, 8, 12 and 16 mol%). To prepare Ru-based catalysts, the support materials were impregnated with RuO₂ nanoparticles (nominal 2 wt% Ru), which were pre-synthesized from the reaction between RuCl₃ and H₂O₂, and calcined at 450 °C.

Results and Discussion

An increase in V loading to 16% leads to a significant reduction in the specific surface area, from $492 \text{ m}^2/\text{g}$ for Ru/SiO₂ to $34 \text{ m}^2/\text{g}$ for Ru/16%V-SiO₂. Additionally, the morphology change is evident in Figure 1: Ru/SiO₂ catalyst exhibits a spherical morphology with mesopores, while Ru/16%V-SiO₂ catalyst shows an irregular shape with macropores. These changes are attributed to the formation of V_2O_5 crystallites in Ru/16%V-SiO₂, in accordance with the DRUV-vis and XRD results. Despite the decreased specific surface area, the catalytic activity of Ru/16%V-SiO₂ is markedly improved. Its methanation rate at 250 °C (168 $\mu mol_{CO_2}g_{Ru}^{-1}s^{-1})$ is ca. 7-fold higher than that of Ru/SiO₂ (24 μ mol_{CO₂} g_{Ru}^{-1} s⁻¹), indicating that high surface area is not the determining factor for these catalysts. Instead, V_2O_5 helps stabilize Ru nanoparticles and prevent their aggregation, unlike in the case of Ru/SiO₂ catalyst, as illustrated in Figure 1. Furthermore, chemical and electronic modifications during H₂ reduction and CO₂ hydrogenation could positively influence the catalytic activity. The H₂-TPR profile of Ru/16%V-SiO₂ suggests the formation of Ru-V interaction, where hydrogen spillover from Ru facilitates further reduction of V_2O_5 . Consistently, the band in the 300-500 nm region in Figure 2(a), corresponding to O²⁻–V⁵⁺ charge transfer, decreases upon H₂ reduction and especially during reaction at 300 °C, indicating a decreased amount of V⁵⁺. Simultaneously, a weak broad band emerges in the 500-700 nm region, attributed to the d-d transition of V^{4+} and/or V^{3+} species. The reduction of V^{5+} to V^{4+} or V^{3+} during exposure to H_2 or reactant mixture could generate oxygen vacancies, commonly

regarded as a source of electron carrier. This chemical modification by oxygen-vacancy formation could lead to electronic modification of Ru sites, which affects the adsorption of key CO intermediates, as observed in the in-situ DRIFTS spectra during CO₂ methanation at 300 °C (Figure 2(b)). For Ru/16%V-SiO₂ catalyst, alongside linear CO adsorption on metallic Ru (Ru-CO at 2055-1995 cm⁻¹), V₂O₅ could promote bridge CO adsorption at the metal-support interface (Ru_{if}-CO at 1971 cm⁻¹) and linear CO adsorption on electronically modified Ru sites (2074 cm⁻¹). Promotion of CO₂ activation and CO adsorption on these active sites may facilitate electron back-donation to the adsorbed CO, weakening C-O bonds for further hydrogenation towards CH₄ formation.

Figure 1. TEM images of (a) Ru/SiO₂ and (b) Ru/16%V-SiO₂ catalysts.

Figure 2. (a) In-situ DRUV-Vis spectra of Ru/16%V-SiO₂. (b) In-situ DRIFTS spectra during CO₂ methanation at 300 °C after 30 mins over Ru/SiO₂, Ru/4%V-SiO₂, and Ru/16%V-SiO₂ catalysts.

The CO₂ methanation activity of Ru/SiO₂ catalyst is significantly enhanced by the addition of vanadium promoter. The presence of V₂O₅ not only stabilizes Ru nanoparticles and prevents their aggregation but also provides the interaction between Ru and O-vacancies, facilitating electron transfer to interfacial Ru sites during H₂ reduction and CO₂ hydrogenation. This promotes CO₂ activation and CO adsorption on these sites, thereby improving catalytic activity in CO₂ methanation. This study enhances the understanding of the promoting effect of vanadium on CO₂ methanation. The potential of this vanadium promoter strategy could be further explored for other catalytic systems or reactions beyond CO₂ hydrogenation to CH₄.

References

- 1. J. Ashok, S. Pati, P. Hongmanorom, Z. Tianxi, C. Junmei, S. Kawi, Catal. Today 2020, 356, 471.
- 2. M.M.F. Hasan, L.M. Rossi, D.P. Debecker, K.C. Leonard, Z. Li, B.C.E. Makhubela, C. Zhao, A. Kleij, *ACS Sustainable Chem. Eng.* **2021**, *9*, 12427.
- 3. A. Petala, P. Panagiotopoulou, Appl. Catal., B 2018, 224, 919.
- 4. M. Gao, J. Zhang, P. Zhu, X. Liu, Z. Zheng, Appl. Catal., B 2022, 314, 121476.

Acknowledgements

This work was supported by the Southeast Asia-Europe Joint Funding Scheme for Research and Innovation (project PINT-MULTI/BEJ-R.8001.21).