

Solid Catalyst with Ionic Liquid Layer (SCILL) for Direct CO₂ Hydrogenation to Methanol: Enhancing Performance and Stability

Giuseppe BAGNATO¹, Emilia MORROW¹, Hannah AGNEW¹, Małgorzata SWADŹBA-KWAŚNY¹ and <u>Nancy ARTIOLI</u>² * ¹School of Chemistry and Chemical Engineering, Queen's University Belfast, David-Keir Building, Stranmillis

Road, Belfast, BT9 5AG, UK

²CEEP Laboratory, Department of Civil Engineering, Architecture, Territory, Environment and Mathematics,

University of Brescia, via Branze 38, 25123 Brescia, Italy;

*nancy.artioli@unibs.it

Significance and Relevance

This research investigates the use of **S**olid **C**atalysts with Ionic Liquid Layers (**SCILL**) for CO₂ direct hydrogenation to methanol with copper-based methanol synthesis catalysts (CZA). Ionic liquids (ILs), known as "designer solvents" for their tunable properties, offer excellent gas solubility, particularly for CO₂, making them ideal for enhancing catalytic processes like hydrogenation and enabling efficient, high-temperature applications. Initial results indicated lower methanol yields compared to the uncoated heterogeneous catalyst, likely due to stability issues with the **SCILL** system in the presence of water. However, the introduction of Ionic liquid Li[NTf₂] doping led to a significant improvement in catalytic performance, enhancing CH₃OH conversion rates compared to traditional CZA. Additionally, this doping increased system stability, especially in the presence of water. These results highlight the potential of SCILL catalysts as a more efficient and stable solution for CO₂ hydrogenation, contributing to sustainable methanol production and CO₂ mitigation.

Preferred and 2nd choice for the topic: 1st choice: CO₂ utilization and recycling; 2nd choice: Sustainable and clean energy production and transport. Preferred presentation: Poster

Introduction and Motivations

This study explores an innovative method for CO_2 hydrogenation to methanol, aiming to enhance conversion efficiency through a Solid Catalyst with Ionic Liquid Layer (SCILL). By integrating an ionic liquid (IL) layer onto a commercial Cu/ZnO/Al₂O₃ catalyst, we aim to improve both stability and catalytic performance. Initially, various ILs were evaluated for their thermal stability using advanced thermogravimetric analysis (TGA). The most stable ILs were selected to form SCILL catalysts with a 10% IL loading. When tested for CO_2 hydrogenation, the SCILL catalysts exhibited significantly improved CO_2 conversion rates compared to conventional catalysts. Furthermore, the incorporation of Li[NTf₂] into the SCILL system enhanced its stability, mitigating the adverse effects of water deactivation observed in untreated SCILL catalysts.

Materials and Methods

In this work, several ionic liquids (ILs), including $[PPh_4][C_4F_9SO_3]$, $[SPh_3][C_8F_{17}SO_3]$, $[SPh_3][C_4F_9SO_3]$, $[PPh_4][NTf_2]$, and $[SPh_3][NTf_2]$, were explored alongside a copper-based catalyst (CZA) to develop Solid Catalysts with lonic Liquid Layers (SCILL). The SCILL catalysts were prepared by combining CZA with ILs in methanol, while doping with Li[NTf2] further modified the system. A thorough characterization of the materials was conducted using techniques such as ICP-OES, BET surface area analysis, XRD, and TPR. The stability of the ILs was studied through dynamic and isothermal TGA, and their degradation behavior was analyzed. The study also assessed the performance and longevity of these ILs under reaction conditions rich in hydrogen. Finally, reactor tests for CO₂ hydrogenation were carried out at 250°C and 20 bar (CO₂/H₂ ratio of 1:3) to evaluate both the SCILL catalysts and the commercial CZA catalyst, providing insights into their practical applications and stability.

Results and Discussion

This study investigates the hydrogenation of CO₂ using a commercial copper-zinc-alumina (CZA) catalyst and a Solid Catalyst with Ionic Liquid Layer (SCILL) system. A range of ionic liquids (ILs), including $[PPh_4][C_4F_9SO_3]$, $[SPh_3][C_8F_{17}SO_3]$, $[PPh_4][NTf_2]$, and others, were synthesized and characterized to assess their thermal stability for SCILL applications. Two ILs, $[PPh_4][C_4F_9SO_3]$ and $[PPh_4][NTf_2]$, were identified as the most thermally stable, with $[PPh_4][NTf_2]$ showing the highest activation energy (Ea) and pre-exponential factor, suggesting excellent thermal stability under reaction conditions.

IL	Activation Energy [kJ/mol]	Pre-exponential factor [h ⁻¹]	R ²	Validation T [°C]	Mass error after 10 h [%]
$[PPh_4][C_4F_9SO_3]$	139.9	2.38·10 ¹²	0.9903	273	0.64
[PPh ₄][NTf ₂]	182.2	4.98·10 ¹⁵	0.9922	295	0.04

Table 1. Results from Arrhenius plots and errors calculated through validation of the kinetic model

These ILs were subjected to thermal stability tests in nitrogen at 250°C and 20 bar over 10 hours, where they showed good resistance. However, degradation was observed in a $CO_2/H_2/H_2O$ mixture. To enhance the system's stability, SCILLs were doped with Li[NTf₂], which significantly improved stability, allowing the doped systems to retain CO_2 absorption capabilities under harsh reaction conditions.

The performance of these doped SCILL systems was evaluated in CO2 hydrogenation reactions (250°C, 20 bar, CO_2/H_2 1:3) over 35 hours. [PPh₄][C₄F₉SO₃] doped with Li[NTf₂] achieved a 25% CO₂ conversion rate, outperforming both the commercial CZA catalyst (10%) and the undoped [PPh₄][NTf₂] (2%). However, the doped system showed a shift in selectivity, favoring CO production instead of methanol. NMR analysis revealed degradation of the phenyl group in [PPh₄][NTf₂], contributing to changes in the product distribution. These results demonstrate the potential of SCILL systems to enhance CO_2 hydrogenation efficiency while highlighting the trade-off in selectivity.

	X CO ₂	Selectivity (%)					
	(%)	CH ₄	Acetone	DME	CH₃OH	CO	
CZA	10.0	0	1.61	8.86	21.9	67.62	
[PPh ₄][C ₄ F ₉ SO ₃] doped Li[NTf ₂]	25.0	0	0	0.15	0.03	99.83	
[PPh ₄][NTf ₂] doped Li[NTf ₂]	3.4	0.05	0	1	2.88	96.06	

Table 2. Results of catalytic testing at 250°C and 20 bar, CO2/H2 1:3

References

- 1. P. Gabrielli, M. Gazzani and M. Mazzotti, Ind. Eng. Chem. Res., 2020, 59, 7033–7045
- 2. M. Scheuermeyer, M. Kusche, F. Agel, P. Schreiber, F. Maier, H. P. Steinrück, J. H. Davis, F. Heym, A. Jess and P. Wasserscheid, New J. Chem., 2016, 40, 7157–7161
- 3. J. Reichert, S. Maerten, K. Meltzer, A. Tremel, M. Baldauf, P. Wasserscheid and J. Albert, Sustain. Energy Fuels, 2019, 3, 3399–3405.