

Cu-Ce binary oxide catalysts for CO₂ hydrogenation to methanol: Operando FT-IR spectroscopy and kinetic study

<u>Marco Pietro MEZZAPESA</u>^{*,1}, Fabio SALOMONE¹, Enrico SARTORETTI¹, Raffale PIRONE¹, Samir BENSAID¹ ¹Politecnico di Torino, Department of Applied Science and Technology (DISAT), Corso Duca degli Abruzzi 24, 10129 Turin, Italy. * marco.mezzapesa@polito.it

Significance and Relevance

This research is significant for advancing sustainable chemical processes by improving CO₂ hydrogenation to methanol, a key industrial chemical. This study of Cu-CeO₂ catalysts highlights the importance of the Cu/Ce ratio and the synthesis technique in optimizing methanol yield. Investigating the relationship between catalyst morphology (e.g., copper particle size) and performance, alongside *in-situ* and *operando* analyses to understand reaction mechanisms and material properties, offers crucial insights for the design of more efficient catalysts.

Preferred and 2nd choice for the topic: CO₂ utilization and recycling / Fundamental advances in understanding catalysis

Preferred presentation: Oral preferred or Short Oral

Introduction and Motivations

In the pursuit of a more sustainable and environmentally responsible future, the conversion of CO_2 into valuable chemicals and fuels has emerged as a crucial research frontier. Among the CO_2 hydrogenation reactions, its conversion to methanol appears as a key process in sustainable chemistry, due to the possible use of this substance as a fuel additive, chemical feedstock, for energy storage, etc. Currently, the hydrogenation of CO_2 to methanol is industrially performed using a Cu-ZnO-Al₂O₃ catalyst¹. This industrial catalyst shows good CO_2 conversion, but the methanol selectivity is not optimal. In this sense, different alternative catalysts have been tested to increase the overall catalytic performance. Among the various possibilities, Cu and CeO₂ show a good synergistic effect for the CO₂ activation in the hydrogenation to methanol process^{1,2}. Based on this consideration, the aim of this work is the study of Cu-CeO₂ catalysts and the implementation of *operando* FT-IR techniques to deepen the knowledge of reaction mechanisms.

Materials and Methods

The Cu-Ce binary oxide catalysts were synthesized using three methods—solution combustion synthesis (scs-), wet impregnation (wi-), and gel-oxalate coprecipitation (ox-)—by varying the Cu/Ce atomic ratio (Cu_xCe_{100-x}). Their physicochemical properties were studied with complementary techniques. Catalytic activity and stability were assessed in a steel fixed-bed reactor (25 bar, 200–300 °C, H₂:CO₂:N₂= 3:1:1, 20 NL/h/g_{cat}). After testing, the spent catalysts were further characterized, and static FT-IR spectroscopy in transmittance mode was employed to assess the properties of the materials, such as basicity and their interaction with specific probe molecules. Additionally, the best-performing catalyst was analyzed using *operando* FT-IR spectroscopy in transmittance mode (H₂/CO₂ = 3:1, 5 bar, 200–350 °C) to investigate the reaction mechanism.

Results and Discussion

The catalytic tests identified ox- $Cu_{80}Ce_{20}$ as the best-performing catalyst, achieving a methanol yield of 0.82% at 300 °C. Using this data and applying the Arrhenius equation, the apparent activation energy for CO_2 hydrogenation was estimated. The coprecipitated catalyst (ox- $Cu_{80}Ce_{20}$) exhibited the lowest activation energy (Ea \approx 80 kJ/mol) and the highest number of active sites, as inferred from the pre-exponential factor (calculated at equal activation energy). Figure 1 summarizes these findings. This high catalytic activity is attributed to the small size of copper particles, which expose more copper surface and enhance the synergistic effect with CeO_2 . A detailed spectroscopic analysis was

subsequently carried out on this catalyst. First, the interaction between the ox-CeO₂ support and methanol was investigated using *in-situ* FT-IR spectroscopy. Figure 2(a) shows the region between 775 and 1200 cm⁻¹, where surface methoxy species signals appear as methanol pressure increases. Subsequent heat treatments in vacuum revealed that these species begin to decompose at 250 °C, indicating their relative stability. Additionally, ox-Cu₈₀Ce₂₀ was analyzed using *operando* FT-IR spectroscopy. As shown in Figure 2(b), the spectra revealed an intensifying peak in the 800-900 cm⁻¹ region with an increasing temperature, indicating the formation of bidentate carbonates above 320 °C due to CO₂ activation. Carbonate species play a specific role in methanol synthesis, inhibiting CO hydrogenation to methanol at the Cu-CeO₂ interface. However, they do not completely inhibit the methanol synthesis reaction, as CO₂ hydrogenation to methanol proceeds on the Cu surface through the formation of formate intermediates. These findings provide valuable insights into the design of more efficient catalysts for CO₂ hydrogenation to methanol.

Figure 1. Arrhenius equation parameters as a function of copper particle size the (calculated using Scherrer equation): (a) apparent activation energy, Ea, and (b) pre-exponential factor (estimated under the assumption of equal activation energy), $ln(k_{\infty})$.

Figure 2. (a) FT-IR spectra obtained for $ox-CeO_2$ during *in-situ* analyses with methanol as a probe molecule. **(b)** FT-IR spectra obtained for $ox-Cu_{80}Ce_{20}$ during *operando* analysis at 5 bar with a 15 NmL/min flow of H₂:CO₂ = 3:1 mixture.

References

- 1. A. Álvarez, A. Bansode, A. Urakawa et al., Chem. Rev. 2017, 117, 9804-9838
- 2. J. Graciani, K. Mudiyanselage, F. Xu et al., Science 2014, 345, 546-550
- 3. E. Sartoretti, C. Novara, M.C. Paganini et al., Catalysis Today 2023, 420, 114037
- 4. L. Lin, S. Yao, Z. Liu et al., J. Phys. Chem. C 2018, 122, 12934-12943

Acknowledgments

Fabio Salomone and Enrico Sartoretti acknowledge the Italian Ministry of University and Research (MUR), program FSE REACT-EU PON Ricerca e Innovazione 2014-2020 (D.M. 1062/2021).

Project funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call for tender No. 1561 of 11.10.2022 of Ministero dell'Università e della Ricerca (MUR); funded by the European Union – NextGenerationEU. Project code PE0000021, Concession Decree No. 1561 of 11.10.2022 adopted by Ministero dell'Università e della Ricerca (MUR), CUP - to be indicated by each Beneficiary, according to attachment E of Decree No. 1561/2022, Project title "Network 4 Energy Sustainable Transition – NEST".