

Exploring the technical and environmental potentialities of rice husk-derived biochar for H₂S removal

Francesca Demichelis^{1*}, Premchand Premchand¹, Camilla Galletti¹, Fabio Alessandro Deorsola¹, Raffaele Pirone¹, Debora Fino¹, Guido Saracco¹

¹Politecnico di Torino, Department of Applied Science and Technology (DISAT), Corso Duca degli Abruzzi 24, 10129 Torino, Italy

10129 101110, Italy

* francesca.demichelis@polito.it

Significance and Relevance

Rice Husk (RH) and biochar were treated with KOH and NaOH before and after pyrolysis at 600 °C under N₂ and CO₂ atmospheres. Alkali pre-activation in CO₂ reduced biochar yield and carbon content but significantly improved specific surface area (SSA) and pore volume (PV), with KOH being more effective than NaOH. The highest SSA and PV (178.4 m²/g and 0.60 cm³/g) were achieved with pre-activated KOH-RH in CO₂ (KOH_RH_CO2). H₂S removal tests showed commercial activated carbon (CAC) and KOH_RH_CO2 performed best. At H2S = 35 ppm at GHSV = 3822 h⁻¹, CAC and KOH_RH_CO2 achieved 65.12 and 40.52 mg H₂S/g, with carbon footprints of 0.12 and 0.08 gCO₂eq/g H₂S removed, respectively.

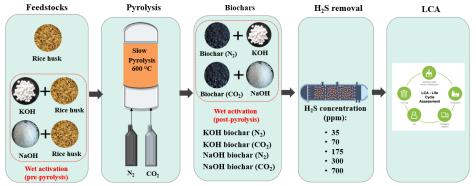
Preferred and 2nd choice for the topic: 1°. Green chemistry and biomass transformation, renewable resources conversion. 2nd Circular economy.

Preferred presentation: Oral preferred or Short Oral

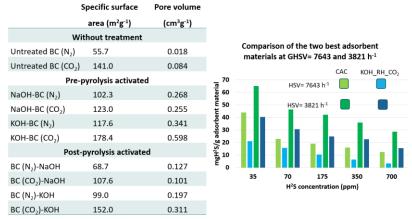
Introduction and Motivations

The Next Generation Level Europe program promotes the green transition by considering renewable energy and waste management. Biogas, produced via anaerobic digestion, is a key renewable energy source but contains toxic H_2S , which must not exceed 5 ppm (WHO). Traditional methods use activated carbon¹, but an alternative can be the biochar produced through slow pyrolysis (sPY) of agricultural waste like rice husk (RH) (European RH production is around 560000 t/y). This study assessed the production and environmental feasibilities of replacing commercial activated carbon with RH-derived biochar as well as activated to remove H_2S by reducing fossil resource consumption, promoting biomethane production, and converting agro-waste into valuable materials.

Materials and Methods


Figure 1 depicts the adopted approach. Pre- and post-activation treatments aimed to enhance biochar's physical and chemical properties. RH was impregnated with KOH or NaOH in a ratio equal to 1:1, before and after pyrolysis at 600°C at 15 °C/min, for 1 h under N₂ or CO₂ atmospheres. The sPY was performed in a fixed-bed reactor and the conditions were based on our previous study². The most promising biochars and commercial activated carbon (CAC) (as a reference), were tested as adsorbents in H₂S dynamic removal tests. These tests were conducted in a vertical fixed-bed reactor at continuous flow, atmospheric pressure, at 25 ± 2 °C, by varying H₂S from 35 to 700 ppm and gas hourly space velocity (GHSV) between 30573 and 3822 h⁻¹. The RH, biochars, and spent biochars were chemically and physically characterized. The biochars with the highest H₂S removal were compared through an ex-ante carbon footprint analysis (CF) (ISO 14067) to identify the best compromise between technical and environmental performances.

Results and Discussion


RH and biochar were activated with KOH and NaOH before and after pyrolysis at 600 °C under N₂ and CO₂ atmospheres. Results indicated that pre-activation with alkalis under CO₂ slightly decreased biochar yield and carbon content, compared to N₂. Alkali pre-activation in CO₂ significantly increased the specific surface area (SSA) and pore volume (PV) of biochars, with KOH more effective than NaOH (Figure 2). Pre- and post-activation with KOH were better than with NaOH, hence H₂S experiments tested: pre-and post-activated biochar with KOH under CO₂, RH-biochar produced under CO₂ and N₂

as a positive control, and commercial activated carbon (CAC) as reference. The performances of these materials were tested at H₂S concentrations of 35 and 70 ppm at three GHSVs: 30573, 15286, and 7643 h⁻¹. Increasing the concentration from 35 to 70 ppm all materials' adsorption capacity and breakthrough time decreased. Additionally, higher GHSV reduced adsorption capacity and breakthrough time. The best performances were observed with CAC and biochar from RH pre-treated with KOH (KOH_RH_CO₂). Hence, these two materials were deeply investigated increasing H₂S concentration from 35 to 700 ppm and decreasing the GHSVs from 7643 to 3822 h⁻¹ (Figure 2). Higher H₂S concentrations reduced the adsorption capacity for both materials due to faster breakthrough times, caused by a greater concentration gradient and increased mass transfer coefficient. However, lower GHSVs improved adsorption capacity and breakthrough times³. The best results were obtained at H₂S = 35 ppm at GHSV = 3822 h⁻¹: CAC and KOH_RH_CO₂ achieved 65.12 and 40.52 mgH₂S/g, respectively. Under these conditions, the CF values for CAC and KOH_RH_CO₂ were 0.08 and 0.12 g CO₂ eq/g H₂S removed, respectively.

Figure 2: Characterization of adsorbent materials and results of H₂S removal test on the most promising adsorbent materials (commercial activated carbon (CAC) and pre-activated RH with KOH).

References:

- Javier, Ó., Bermúdez, F., Giraldo, L., Sierra, R., Juan, R., Moreno, C., 2023. Removal of hydrogen sulfide from biogas by adsorption and photocatalysis : a review. Environ. Chem. Lett. 21, 1059–1073. https://doi.org/10.1007/s10311-022-01549-z
- Premchand, P., Demichelis, F., Chiaramonti, D., Bensaid, S., Fino, D., 2023. Journal of Environmental Chemical Engineering Biochar production from slow pyrolysis of biomass under CO₂ atmosphere : A review on the effect of CO 2 medium on biochar production, characterization, and environmental applications. J. Environ. Chem. Eng. 11, 110009. https://doi.org/10.1016/j.jece.2023.110009
- 3. Cui, S., Zhao, Y., Liu, Y., Huang, R., Pan, J., 2021. Preparation of Straw Porous Biochars by Microwave-Assisted KOH Activation for Removal of Gaseous H 2 S. https://doi.org/10.1021/acs.energyfuels.1c02241