

Spark-ablated metal nanoparticle catalysts supported on TiO₂ for CO₂ methanation

Plaifa HONGMANOROM¹, Damien P. DEBECKER^{*,1}

¹Institute of Condensed Matter and Nanoscience, UCLouvain, Place Louis Pasteur 1, Louvain-La-Neuve, Belgium. * damien.debecker@uclouvain.be

Significance and Relevance

We report the first synthesis of a powdery heterogeneous catalyst using spark ablation technology.¹ A spark nanoparticle generator is modified to allow a direct deposition onto pulverulent materials. The concept relies on the aerosolization of a powder, which is gas-transported and injected in the path of metal nanoparticle formation. Herein, TiO_2 powder is used as the catalyst support, while Ni or Ru electrodes are used to generate Ni or Ru nanoparticles as the active phase. The resulting Ni/TiO₂ and Ru/TiO₂ catalysts are readily active in the hydrogenation of CO₂ to CH₄.

Preferred topic and 2nd choice for the topic: "CO₂ utilization and recycling" and "Fundamental advances in understanding catalysis" Preferred presentation: Oral only

Introduction and Motivations

Spark ablation is a compelling alternative to traditional wet chemical methods, primed to reduced environmental impact (i.e., no use of solvents, precursors, salts, ligands, or high-temperature treatments). It was developed to generate nanoparticles, using electrical discharges between two electrodes of a target material in inert gas flow. This physical process yields metal particles in the 1-10 nm size range. The well-controlled deposition of generated metal nanoparticles onto flat surfaces has been well documented.^{2, 3} Yet, for heterogeneous catalysis, powdery materials are needed.

Materials and Methods

In Figure 1, TiO₂ P25 powder was aerosolized from a mechanically vibrating reservoir by a 4-jet vortex fed with N_2 . The aerosolized powder was transported through a venturi for de-agglomeration before injection into the spark generator. Sparks generated between the Ni or Ru electrodes produced Ni or Ru clusters, which were carried by N_2 to form Ni or Ru nanoparticles deposited onto TiO₂ particles. The resulting Ni/TiO₂ or Ru/TiO₂ catalysts were collected on filter paper.

Results and Discussion

The pristine TiO₂ support and the as-prepared Ni/TiO₂ catalyst exhibit a H3-type hysteresis loop, resulting from the interparticle voids in the loose aggregates of non-porous TiO₂ particles. The diffractograms of the TiO₂ support and the as-prepared Ni/TiO₂ catalyst are presented in Figure 2 (a). After Ni loading (2.3 wt% determined by ICP-AES), the TiO₂ diffraction peaks are unchanged in positions and width, which suggests that TiO₂ crystallites are unaffected by the catalyst preparation. Additionally, the main diffraction peaks of Ni ($2\theta = 44.6^{\circ}$) or NiO ($2\theta = 43.1^{\circ}$) crystalline phases are not detectable in the XRD pattern of the as-prepared Ni/TiO₂ catalyst, excluding the presence of Ni-based crystallites larger than 5 nm. HRTEM image (Figure 3(a)) further confirms this observation, showing small Ni nanoparticles (<5 nm) well-dispersed on TiO₂ and revealing the lattice fringes with inter-planar

distances of 2.0-2.1 Å and 2.35-2.45 Å, corresponding to the (111) crystal plane of cubic Ni and NiO, respectively. It should be noted that the homogeneity of the deposit is still not optimal, as some "floating" Ni/NiO nanoparticles can also be observed, not being in contact with TiO_2 support, in Figure 3(b). Despite no interaction with TiO_2 support, these nanoparticles are very small (<5 nm). Although the Ni loading, Ni particle size and metal-support interaction have not been fully optimized, the Ni/TiO₂ catalyst achieves satisfactory CO₂ conversion of 53% and CH₄ selectivity of 76% at 400°C, as shown in Figure 2(b). After the reaction, HRTEM image (Figure 3(c)) shows that small Ni nanoparticles (a few nanometer), well-dispersed on TiO_2 support, remain stabilized after reductive pretreatment and subsequent reaction. Nevertheless, few large particles (50-80 nm) can also be found in Figure 3(d), likely stemming from the sintering of "floating" Ni nanoparticles without interaction with TiO_2 . The presence of few large Ni nanoparticles is consistent with the small and relatively narrow XRD peak at 44.6° of the spent Ni/TiO₂ catalyst in Figure 2(a).

Figure 2. (a) XRD patterns of the TiO_2 support, as-prepared Ni/TiO₂ catalyst and spent Ni/TiO₂ catalyst. (b) CO₂ conversion and CH₄ selectivity of Ni/TiO₂ catalyst as a function of temperature.

Figure 3. TEM images of (a) and (b) the as-prepared Ni/TiO_2 catalyst and (c) and (d) the spent Ni/TiO_2 catalyst.

The homogeneity of deposition could be further improved by improving the design of the mixing zone and better controlling the powder aerosolization. Additionally, the scope could be expanded to other metals (e.g., Ru, Rh, Pd, Co, and Fe), which have been reported as active and selective metal catalysts for CO_2 methanation. Currently, Ru electrodes are used to generate Ru nanoparticles deposited on TiO₂ powder. The resulting Ru/TiO₂ catalyst demonstrates promising catalytic performance, achieving 53% CO₂ conversion and 100% CH₄ selectivity at 300 °C.

References

- 1. D.P. Debecker, P. Hongmanorom, T.V. Pfeiffer, B. Zijlstra, Y. Zhao, S. Casale, C. Sassoye, *Chem. Commun.* **2024**, *60*, 11076.
- 2. T.V. Pfeiffer, J. Feng, A. Schmidt-Ott, Adv. Powder Technol. 2014, 25, 56.
- 3. S. Drdova, M. Gao, O. Sambalova, R. Pauer, Z. Zhou, S. Dimitriadou, A. Schmidt-Ott, J. Wang, *Environ. Sci.: Nano.* **2024**, *11*, 1023.

Acknowledgements

The authors gratefully acknowledge the Fonds De La Recherche Scientifique – FNRS (10.13039/501100002661) for supporting this work.