

Ni nanoparticles decorated over Y³⁺ promoted CeO₂ single-atom catalysts for enhanced low-temperature CO₂ methanation

<u>Neha CHOUDHARY</u>¹, Navdeep SRIVASTAVA², Biplab GHOSH³, Patrick DA COSTA^{*1}

¹Institut Jean Le Rond D'Alembert, Sorbonne Université, CNRS UMR 7190, 2 Place de la Gare de Ceinture, 78210 Saint-Cyr-L'Ecole, France ²Department of Chemistry, Indian Institute of Technology-Indore, Simrol, Khandwa Road, 433552, India ³BARC Beamlines Section, Indus-2, RRCAT, Indore, 452013 India *patrick.da_costa@upmc.fr

Significance and Relevance

In this work, Ni nanoparticles decorated over Y^{3+} doped over CeO₂ support Single-atom catalysts were prepared to enhance the catalytic activity and selectivity of typical Ni/CeO₂ catalysts. The XPS spectra confirm that the doping of Y^{3+} increases the oxygen vacancies over CeO₂ and consequently enhances the catalytic activity at low reaction temperatures. For comparison, impregnated NiY/CeO₂ and Ni/CeO₂ catalysts were also tested for methanation, which showed less selectivity towards methane products. Moreover, STEM-EDS analysis confirmed the uniform dispersion of Yttrium over CeO₂ in synthesized SACs. The results demonstrate the synergistic effect of Ni with Y to enhance the active sites over CeO₂ support for enhanced catalytic performance.

Preferred and 2nd choice for the topic: CO₂ utilization and recycling, Sustainable and clean energy production and transport

Preferred presentation: (Oral only / Oral preferred or Short Oral / Poster) Oral preferred or short oral

Introduction and Motivations

The hydrogenation of CO₂ into CH₄ is an efficient approach for addressing environmental issues related to CO₂.^[1] The methanation of CO₂ is receiving increasing focus because of its growing relevance in applications like the power-to-gas concept and long-duration space exploration missions. In this context, catalysts play a crucial role in improving the selectivity towards methane, particularly at low reaction temperatures, and for this purpose, Ni-based catalysts are proven to be good catalysts owing to their low cost. However, Ni/CeO₂ has been extensively explored for the methanation reaction owing to the synergistic effect between Ni and CeO_2 support due to its high surface area and great oxygen mobility. Recently, Cr³⁺ and Eu³⁺ doping over Ni/CeO₂ was reported to generate surface oxygen vacancy over ceria support by creating more Ce^{3+,} consequently enhancing the catalytic performance.^[2,3] Moreover, Zhang et al.^[4] the dual-active-site SACs were explored where Ru SACs over CeO₂ were prepared with Ni nanoparticles boosted catalytic performance for CO₂ methanation. SACs have high exposure to active sites and enhanced shows both properties of homogeneous and heterogeneous catalysts.^[5] On the other hand, the effect of Y over Ni-based catalysts for CO₂ methanation was wellexplored by our group, where Yttrium improved the basicity of catalysts and led to stabilizing the catalyst for carbon formation.^[6,7] Hence, keeping this in mind, we synthesized Y/CeO₂ SACs with ~5 wt% of Y loading and then Ni nanoparticles were impregnated over as synthesized SACs and named as NiY/CeO₂. Furthermore, for comparison, impregnated NiY NPs over CeO₂ and Ni/CeO₂ were also prepared and tested for methanation reaction. All these catalysts are well-characterized and analyzed for CO₂ methanation reaction.

Results and Discussion

Y/CeO₂ SACs with 1:9 molar ratio was synthesized via co-precipitation method and further Ni nanoparticles were impregnated over as prepared Y/CeO₂ SACs via incipient wetness impregnation method. For comparison, Ni and Y together impregnated over ceria support were prepared by the impregnation method and named as Ni/CeO₂-imp. Additionally, Ni/CeO₂-imp was also prepared without using Yttrium salt. These prepared catalysts were characterized via various characterizing

techniques like PXRD, H₂-TPR, CO₂-TPD, H₂-TPD, BET, HR-TEM, STEM-EDS, XPS, EXAFS, ICP-OES etc. PXRD analysis of fresh catalysts confirmed the doping of Y over ceria while shifting of (111) plane of ceria was observed to higher 2θ value, which may be because of the change in interplanar spacing in ceria lattice after doping of Y^{3+} in case of NiY/CeO₂ SACs. Furthermore, the presence of NiO was confirmed through PXRD matches with JCPDS#96-900-8694. N₂ adsorption-desorption analysis confirmed the high surface area and CO_2 TPD showed high basicity in comparison to Ni/CeO₂ catalyst. Furthermore, STEM-EDS analysis was performed, which showed uniform dispersion of Y over ceria even after impregnation of Ni NPs. ICP-OES analysis is in good agreement with the wt% obtained via STEM-EDS analysis where Y is ~5 wt% and Ni is ~7 wt% observed over ceria support. XPS analysis confirmed that NiY/CeO₂ SACs have more surface oxygen vacancies than Ni/CeO₂-imp catalysts, confirming the effect of Y doping over ceria support. Also, XPS spectra revealed higher Ce³⁺ in the case of NiY/CeO₂ than Ni/CeO₂ catalysts. After careful characterization, the set of all catalysts was utilized for the CO₂ methanation reaction, where NiY/CeO₂ showed superior catalytic activity with 82% conversion and ~100% selectivity over undoped Ni/CeO₂-imp and NiY/CeO₂-imp catalysts at 350°C (Figure 1). Moreover, a long test run was also performed to utilize the robustness of the NiY/CeO₂ SAC for 40 hours, which showed no significant change in catalytic performance. These results provide a valuable perspective for assessing the hydrogenation process, thereby establishing a link between structure and activity performance. Additionally, the results offer important insights into the role of oxygen vacancies and their impact on catalytic activity.^[6]

Figure 1. Methanation results of CO_2 methanation with NiY/CeO₂ catalysts (A) conversion and (B) selectivity.

References

- [1] N. Choudhary, K. Nabeela, N. Mate, S. M. Mobin, RSC Sustain. 2024, DOI 10.1039/D4SU00069B.
- [2] Z. Zhang, Z. Yu, K. Feng, B. Yan, Appl. Catal. B Environ. 2022, 317, 121800.
- [3] X. Xu, L. Liu, Y. Tong, X. Fang, J. Xu, D. Jiang, X. Wang, ACS Catal. 2021, 11, 5762–5775.
- [4] T. Zhang, P. Zheng, F. Gu, W. Xu, W. Chen, T. Zhu, Y.-F. Han, G. Xu, Z. Zhong, F. Su, *Appl. Catal. B Environ.* **2023**, *323*, 122190.
- [5] N. Choudhary, S. Jiang, H. Pham, G. Kedarnath, A. Datye, J. T. Miller, A. K. Tyagi, M. M. Shaikh, *Appl. Catal. B Environ.* **2024**, *344*, 123627.
- [6] C. Sun, P. Beaunier, V. La Parola, L. F. Liotta, P. Da Costa, ACS Appl. Nano Mater. 2020, 3, 12355– 12368.
- [7] C. Sun, K. Świrk Da Costa, D. Wierzbicki, M. Motak, T. Grzybek, P. Da Costa, *Int. J. Hydrog. Energy* **2021**, *46*, 12169–12179.

Acknowledgments

We thank the PEPR Power CO₂, Sorbonne University and CNRS for financial support. We would like to acknowledge the Instrumentation facility of Sorbonne University for STEM, University of Lille for PXRD, IC2MP for ICP-OES, MNIT-Jaipur, India for XPS and synchrotron facility at RRCAT, India for EXAFS analysis.