

Design of nanostructured Cu oxides for the electrocatalytic CO₂ reduction

<u>Falak SHAFIQ</u>^{*,1} Davide MELOTTO¹, Tatiana RODRIGUEZ-FLORES¹, Laura VIGNI², Mariangela LONGHI², Marco MONTALBANO², Maria Vittoria DOZZI², Lorenzo MINO³, Roberto NISTICO'¹
¹University of Milano-Bicocca, Dept. of Materials Science, Via R. Cozzi 55, Milano, Italy.
²University of Milano, Dept. of Chemistry, Via C. Golgi 19, Milano, Italy.
³University of Torino, Dept. of Chemistry and NIS Centre, Via P. Giuria 7, Torino, Italy.
* f.shafiq@campus.unimib.it

Significance and Relevance

In the present study, Cu oxides-based materials, selected for their strong coordination ability with CO intermediates, were synthesized following different soft-chemistry approaches, varying the final morphology (*i.e.*, size/shape, aspect ratio, crystal planes orientation). After performing morphological (SEM), and structural (XRD) characterizations, such materials were thus tested in the electrocatalytic CO_2 reduction (e- CO_2R), showing a different selectivity toward specific C_1 - C_2 + products depending on the final morphology.

Preferred and 2nd choice for the topic:

- CO₂ utilization and recycling.
- Fundamental advances in understanding catalysis.

Preferred presentation: Oral preferred or Short Oral

Introduction and Motivations

The current energetic paradigm is based on the consumption of fossil fuels to produce energy. However, the extensive use of traditional fossil fuels is one of the major causes of the release of greenhouse gases (*e.g.*, CO₂) in the atmosphere with consequent threat to the global climate balance and depletion of fossil fuels resources. Among the different alternative solution, electrochemistry is a very promising and appealing technology potentially able to accomplish the conversion of renewable sources into fuels for energy applications in a green way, alternative to the traditional fossil fuels, such as the CO₂ reduction (CO₂R) into valuable C₁-C₂₊ products. However, the possibility of exploiting these catalytic routes to produce fuels at large scale is still strongly affected by the selection of the best catalysts and the optimization of the process parameters.^{1,2}

Materials and Methods

CuO systems were synthesized applying either a hydrothermal (H1) or a co-precipitation route (P2). Route H1: CuO formation occurred by using an alkaline solution of 6 M NaOH as precipitating agent. The synthesis took place in an autoclave by varying the treatment temperature between 150 °C and 200 °C, in a time interval of 10 hours. Route P2: synthesis took place at constant temperature (80 °C), by varying both the concentration of the precipitating agent NaOH (*i.e.*, 0.50 M, 0.75 M, 1.00 M, and 2.00 M), and the reaction time (either 30 minutes, or 2 hours).

Cu₂O systems were synthesized following a selected protocol involving the precipitation of Cu₂O in presence of PEG, L-ascorbic acid as reducing agent, and NaOH as precipitating agent.³ Different parameters (*e.g.*, stirring time, temperature, amount of reducing agent) were systematically optimized.

Results and Discussion

The following three main CuO catalysts were investigated in the e-CO₂R: *i*) H1-01 synthesized by the hydrothermal route and exhibiting a large (0.8-1.5 μ m) prismatic-tabular morphology (Fig. 1A), *ii*) P2-02 synthesized by the precipitation route with a small (< 500 nm) sheet-like morphology (Fig. 1B) and *iii*) P2-04 synthesized by means of the precipitation route with large (0.8-1.2 μ m) sheet-like morphology (Fig. 1C). Electrocatalytic tests, performed in a dedicated flow cell set-up, confirmed that the products selectivity strongly depended on both morphology and dimensions of the CuO catalysts.

In particular, at low applied current density (50-100 mA cm⁻²), H1-01 favors the CO₂-to-CO conversion, whereas at high current density this system becomes more unstable and less selective. Differently, at low current density, both P2-02 and P2-04 systems favor the CO_2 -to- C_2H_4 conversion, whereas at high current density, the selectivity toward the detrimental hydrogen evolution reaction (HER) starts becoming predominant. Only the P2-04 shows an increased CO_2 -to- CH_4 conversion selectivity.

High resolution TEM analysis and FTIR spectroscopy tests in presence of probe molecules are ongoing to clarify the role played by the morphology in term of catalytic selectivity.

The performances attained with the following three main Cu_2O -based samples in the e-CO₂R is currently ongoing: *i*) F1-03 composed of small quasi spherical Cu_2O NPs with the presence of large polyhedral metallic Cu nanoparticles (NPs), *ii*) F1-07 made by small quasi spherical pure Cu_2O NPs, and *iii*) F1-12 composed of large polyhedral metallic Cu NPs (for the sake of comparison).

The obtained results will provide an effective screening of the fundamental properties necessary for maximizing the catalytic performances and specific selectivity of these systems in the e-CO₂R.

Figure 1 SEM micrographs (top) and Faradaic Efficiencies attained in the $e-CO_2R$ test (bottom) of H1-01 (A, A'), P2-02 (B, B') and P2-04 (C, C') CuO-based materials.

References

- 1. A.R. Woldu, Z. Huang, P. Zhao, L. Hu, D. Astruc, Coord. Chem. Rev. 2022, 454, 214340.
- 2. R.-Z. Zhang, B.-Y. Wu, Q. Li, L.-L. Lu, W. Shi, P. Cheng, Coord. Chem. Rev. 2020, 422, 213436.
- 3. M. Mallik, S. Monia, M. Gupta, A, Ghosh, M.P. Toppo, H. Roy, J. Alloys Compd. 2020, 829, 154623.

Acknowledgements

This work received financial support from MUR (Italy) and the European Union – Next Generation EU, Mission 4, Component 1, CUP (H53D23008000001) through the PRIN Project PERFECT (N. P2022TK9B9) and CUP (H53D23004490001) through the PRIN Project MAPEC (N. 2022599NR3).