

Ni-La Perovskite Catalysts for CO₂ Methanation: Uncovering the Structure-Function Correlation

Luca CONSENTINO^{*,1,2}, Miriam GONZÁLEZ-CASTAÑO³, Luis F. BOBADILLA³, Michelangelo GRUTTADAURIA², Leonarda Francesca LIOTTA¹, José Antonio ODRIOZOLA³

¹ ISMN-CNR, Via U. La Malfa 153, 900146 Palermo, Italy ² STEBICEF Department Ed. 17, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy

³ Department of Inorganic Chemistry, University of Seville (ICMS-CSIC), C/Americo Vespucio 49, 41092 Seville,

Spain

* lucaconsentino@cnr.it

Significance and Relevance

This work explores Ni-La perovskite catalysts for CO₂ methanation, emphasizing the critical role of catalyst structure and pre-reduction temperature in enhancing conversion efficiency. By comparing one-pot-synthesized lanthanum nickelate with Ni-impregnated lanthanum oxide, it reveals how advanced synthesis techniques, like microwave-assisted methods, improve Ni dispersion and oxygen vacancy formation—key factors for catalytic performance. Findings show that structural modifications and pre-reduction temperature in Ni-La perovskites directly influence CO₂ adsorption and methane production rates, offering insights for designing efficient, sustainable catalysts. This research supports advanced CO₂ utilization technologies crucial for global carbon neutrality efforts.

Preferred and 2^{nd} choice for the topic: Sustainable and clean energy production and transport/CO₂ utilization and recycling

Preferred presentation: Oral preferred or Short Oral

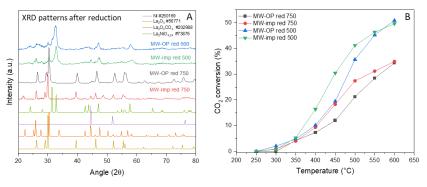
Introduction and Motivations

In response to global carbon neutrality goals, particularly the European Union's target of achieving carbon neutrality by 2050¹, CO₂ methanation offers a promising pathway to synthesize synthetic natural gas (SNG) within the power-to-gas (PtG) framework. The Sabatier reaction $(CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O)^2$ provides a thermodynamically favourable method to convert CO₂, a greenhouse gas, into valuable methane. However, the reaction is kinetically limited, requiring efficient catalysts to enhance conversion rates³. Nickel (Ni)-supported systems are widely studied as active and selective catalysts, owing to Ni's cost-effectiveness and availability⁴. Catalysts based on Ni and non-stoichiometric materials are particularly promising, as oxygen vacancies within these materials play a critical role in CO₂ adsorption, enhancing metal dispersion, and improving resistance to coking⁵. Perovskite structures, in particular, offer excellent oxygen mobility and are resistant to reductive conditions, making them ideal for CO₂ methanation⁶. Previous studies, including work by Grabchenko et al.⁷, have demonstrated the superior performance of Ni-La perovskites, with the Ni/La₂O₂CO₃ interface playing a significant role in performance, influenced by synthesis methods.

This study evaluates two catalyst structures: lanthanum nickelate prepared via one-pot synthesis and Ni-impregnated lanthanum oxide. Both were synthesized using microwave radiation-assisted (MW) method to improve Ni dispersion and phase uniformity⁸. The results establish key correlations between catalyst structure and CO₂ methanation performance, with a focus on surface species and their impact on reaction rates. Additionally, the study highlights the importance of oxygen vacancies and catalyst reduction in enhancing performance.

Materials and Methods

The one-pot synthesis of lanthanum nickelates was achieved in a single step using microwave radiation-assisted precipitation (MW-OP), employing the corresponding nitrates as precursors. For comparison, lanthanum oxide was prepared using the same procedure and subsequently impregnated with 12 wt.% Ni via the wetness method (MW-Imp). Physicochemical properties were analyzed using XRD, N₂-physisorption, H₂–TPR, and XPS techniques. CO₂ methanation reaction was conducted on partially and fully pre-reduced samples (at 500 and 750 °C for 1 hour under H₂/Ar flow) in a fixed-bed



tubular reactor, with a CO₂ and H₂ gas mixture (1:4 ratio) diluted in N₂. In situ DRIFTS-MS studies were performed reducing the samples at 500 °C or 750 °C in a 10% H₂/Ar stream for 1 hour to evaluate the active phases formed from the reduction treatment. The reaction was monitored by feeding an H₂/CO₂ mixture (4:1 ratio) diluted in argon into the IR cell at 250 °C, allowing for steady-state analysis with spectra recorded every 120 seconds. Effluent gases were analyzed via mass spectrometry.

Results and Discussion

The comparison of XRD patterns of MW-OP and MW-Imp confirmed perovskite-like structures in fresh catalysts, with distinct phases emerging after pre-reduction at 500°C and 750°C (**Figure 1A**), highlighting the influence of synthesis and reduction conditions on catalyst properties. These structural variations impact CO₂ conversion rates, with catalysts containing a higher fraction of perovskite structures demonstrating improved catalytic efficiency. Notably, pre-reducing the catalysts at 500°C preserves Ni-perovskite interfaces, which enhances CO₂ adsorption and conversion, attributed to the unique Ni-La interphase created within perovskite structures (**Figure 1B**). In situ DRIFTS further showed that different active phases formed at each reduction temperature, aligning with the observed improvements in methanation efficiency.

These insights into structure-to-function relationships underscore the critical role of phase composition, Ni dispersion, and oxygen vacancies in optimizing CO₂ conversion.

Figure 1 XRD patterns of catalysts after reduction at 500 and 750°C (A), CO2 conversion of the catalysts pre-reduced at 500 and 750°C (B).

References

- 1. J.C. Navarro, M.A. Centeno, O.H. Laguna, J.A. Odriozola, *Catalysts* **2018**, *8*, 1–25.
- 2. M. Konsolakis, M. Lykaki, S. Stefa, S.A.C. Carabineiro, G. Varvoutis, E. Papista, G.E. Marnellos, *Nanomaterials* **2019**, *9*.
- 3. K. Stangeland, D. Kalai, H. Li, Z. Yu, Energy Procedia 2017, 105, 2022–2027.
- 4. T.A. Le, M.S. Kim, S.H. Lee, T.W. Kim, E.D. Park, Catalysis Today 2017, 293–294, 89–96.
- 5. O.E. Everett, P.C. Zonetti, O.C. Alves, R.R. de Avillez, L.G. Appel, Internation Journal of Hydrogen Energy **2020**, *45*, 6352–6359.
- 6. M. González-Castaño, J.C.N. de Miguel, A. Penkova, M.A. Centeno, J.A. Odriozola, H. Arellano-Garcia, *Applied Materials Today* **2021**, *23*, 27–30.
- 7. M. Grabchenko, G. Pantaleo, F. Puleo, O. Vodyankina, L.F. Liotta, *Internation Journal of Hydrogen Energy* **2021**, *46*, 7939–7953.
- 8. G. Pantaleo, V. La Parola, F. Deganello, R.K. Singha, R. Bal, A.M. Venezia, *Applied Catalysis B*: *Environmental* **2016**, *189*, 233–241.

Acknowledgements

The Projects "NEST - Network 4 Energy Sustainable Transition" (CUP B53C22004060006), "Capitale Naturale e Risorse per il Futuro dell'Italia (FOE 2020) (CUP B85F21002120005), and PNRR AdP ENEA-CNR (CUP B93C22000630006) are acknowledged for financial support.