

Transient isotopic study of low-temperature NO_x reduction by H₂ on Pt/Mo/ZrO₂ catalyst

Daniel SCHRÖDER¹, Sven KURETI^{1,*}

¹ Institute of Energy Process Engineering and Chemical Engineering, Chair of Reaction Engineering, TU Freiberg, Fuchsmuehlenweg 9D, 09599 Freiberg, Germany * sven.kureti@iec.tu-freiberg.de

Significance and Relevance

Steady State Isotopic Transient Kinetic Analysis (SSITKA) and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) was used to study the mechanism of low-temperature NO_x reduction by H₂ in lean exhaust gas using highly active Pt/Mo/ZrO₂ catalyst [1]. SSITKA clearly shows the participation of adsorbates at the interface around the Pt particles. Moreover, in-situ DRIFTS experiments with isotopic switch from H₂ to D₂ elucidates an additional reaction path toward the formation of N₂ involving NH_x species coordinated to strong acid sites of highly dispersed MoO_x moieties.

Preferred and 2nd choice for the topic:

Fundamental advances in understanding catalysis, Automotive and stationary emission control *Preferred presentation*: Oral preferred or Short Oral

Introduction and Motivations

For NO_x removal from lean automotive exhaust gases, selective catalytic reduction (SCR) and NO_x storage catalysts are established technologies, whereas they operate efficiently only above 175°C. Contrary, future NO_x emissions limits (e.g. Euro-7) will require an effective abatement of NO_x even at low temperatures. For this purpose, the NO_x reduction by H₂ (H₂-deNO_x) on Pt catalysts is a promising technique. However, these catalysts still suffer from significant N₂O and/or NH₃ by-production. Recently, the modification of Pt/ZrO₂ with Mo [1] and W [2] was reported to provide both high activity at low temperatures as well as reduced N₂O and NH₃ emissions. Moreover, enhanced strong Lewis acidity of Pt/Mo/ZrO₂ was found to improve N₂ formation, suggesting a highly selective additional SCR-related mechanistic deNO_x pathway [1]. Therefore, this study aims to unravel the reaction mechanism of NO_x reduction by H₂ on Pt/Mo/ZrO₂ combining SSITKA and in-situ DRIFTS studies.

Materials and Methods

Pt/xMo/ZrO₂ catalysts were prepared by incipient wetness impregnation of monoclinic ZrO₂ with Pt(NO₃)₂ (w(Pt) = 0.25 wt.%) and (NH₄)₆Mo₇O₂₄ · 4 H₂O (w(Mo) = 0 and 3 wt.%) with subsequent 5h calcination at 500°C. SSITKA experiments were used for in-situ quantification of reactive species in H₂-deNO_x reaction. After rapid switching from ¹⁴NO to ¹⁵NO by a pneumatic 4-way valve, the evolution of the isotope-labelled products was monitored using an online mass spectrometer. Kr served as inert tracer to correct the gas phase hold-up. Furthermore, in-situ DRIFT spectroscopy enables the identification of adsorbates at the surface of working catalyst. The red shift of the IR bands following the switch from ¹⁴NO to ¹⁵NO and H₂ to D₂ was used to discriminate reactive from inactive species. All measurements are performed in lean synthetic exhaust gas (200 ppm ¹⁴NO/¹⁵NO, 5% O₂, 2000 ppm H₂/D₂, Ar balance, GHSV = 70.000h⁻¹) after reaching steady state at 90°C, 120°C and 150°C.

Results and Discussion

The SSITKA experiment shows a significantly increased number of active species when 3 wt.% Mo is added to the Pt/ZrO₂ catalyst. In particular the amount of N₂ forming intermediates is increased e.g. from 4,3 μ mol \cdot g⁻¹ to 35,0 μ mol \cdot g⁻¹ at 120°C, whereas the N₂O-generating species are barely affected.

	90°C	120°C	150°C
Pt/ZrO ₂	0,7 ±0,9	3,7 ±2,1	7,3 ±1,4
Pt/3Mo/ZrO₂	6,1 ±0,6	5,6 ±0,5	1,0 ±0,3

Table 1. Ratio of active species (SSITKA) to available platinum sites (CO-TPD).

However, for both catalysts the number of active species exceeds the number of available Pt sites (Table 1), suggesting some adsorbates on the support are also involved in the H_2 -deNO_x reaction.

Figure 1. In-situ DRIFTS spectra of Pt/3Mo/ZrO₂ after H₂ to D₂ switch, Conditions: 200 ppm NO, 2000 ppm H₂/D₂, 5 Vol.% O₂, Ar Balance, ca. 70.000 h⁻¹.

In-situ DRIFTS experiments show that nitrites are active species on Pt/ZrO_2 as indicated by a 30 cm⁻¹ red-shift of $v_{as}(N-O)$ band at 1190 cm⁻¹. It is assumed that active nitrites are reduced by hydrogen spillover from platinum particles [3]. Although up to 65 ppm NH₃ was detected in the gas phase, no evidence of active NH_x could be found on Pt/ZrO₂ after switch from H₂ to D₂.

In contrast using Pt/3Mo/ZrO₂ catalyst, no NH₃ is detected in the gas phase but in-situ DRIFTS experiments show characterristic bands of chemisorbed NH₃ (δ_{as} (NH₄⁺) at 1435 cm⁻¹ and δ_s (NH₃) at 1209 cm⁻¹). More importantly, H₂ to D₂ switch provides evidence that both NH₄⁺ and NH₃ coordinated to Lewis acid sites are active for the NO_x reduction below 200°C even in

the presence of H₂ (Fig. 1). The strong decline of $\delta_s(NH_3)$ band indicates the particularly high reactivity of NH₃ at the Lewis acid sites (Fig. 2). Additionally, nitrites also appear to be active species on Pt/3Mo/ZrO₂ catalyst. Note that the observed decline in IR band intensities of active species is in good agreement with the decay of ¹⁴N product observed during SSITKA (Fig. 2).

Figure 2. Decline of ¹⁴N products (SSITKA) and band intensity of active species after switch from ¹⁴NO to ¹⁵NO and H₂ to D₂ (in-situ DRIFTS) at Pt/ZrO₂ (left) and Pt/3Mo/ZrO₂ (right) at 120°C.

The initial isotope distribution of the products reveals that NO_x reduction by NH_x species is a major reaction pathway for H₂-deNO_x on the Mo promoted catalyst, accounting for about 70% of the total NO_x conversion at 120°C. Finally, initial selectivity of ¹⁴N products demonstrates that the reaction of these active adsorbates mainly forms N₂ (S(N₂) > 80%).

The study proves for the first time that the of Pt/ZrO_2 with MoO_x enables an additional reaction pathway of H_2 -deNO_x with high N_2 selectivity. In this mechanism ammonia formed on the Pt sites readsorbs on the strong acid sites at highly dispersed MoO_x moieties, followed by a reaction of both NH_3 and NH_4^+ with NO at the interface between the Pt sites and MoO_x . Thus, our study highlights the particular importance of acidity to improve the activity and selectivity of lean H_2 -deNO_x catalysts.

References

- 1. D. Schröder, S. Kureti, Top Catal 2023, 66, 787–796.
- 2. E. Eßer, D. Schröder, S. Kureti, J Catal 2023, 423, 129-144.
- 3. C. N. Costa, A. M. Efstathiou, J. Phys. Chem. C, 2007, 111, 3010-3020.