

Dual-Function Bi-Based Electrodes for Coupled CO₂ Reduction and Glycerol Oxidation

<u>Shokouh Masoumi¹</u>, Zohreh Masoumi¹, Daeseung Kyung^{*,1} ¹ Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea

* <u>dkyung@ulsan.ac.kr</u>

Significance and Relevance

These Bi-based electrodes enable simultaneous electrochemical CO₂ reduction (CO₂RR) and glycerol oxidation (GOR), leveraging a dual-function catalytic system that increases efficiency and selectivity for both reactions. These electrodes enhance the catalytic pathway for CO₂-to-formate conversion and effectively utilize GOR alongside CO₂RR. These electrodes are used in a single reaction system, and to our knowledge, this is the first time they are utilized in dual-function systems, which enhance reaction performance. Coupling GOR with CO₂RR is an efficient way to use a waste byproduct (glycerol, from biodiesel production) while generating valuable chemicals like formate. This integrated approach aligns with circular economic principles by combining waste utilization and chemical synthesis.

Preferred and 2nd choice for the topic: Integrated CO₂ Reduction and Glycerol Oxidation on Bi-Based Electrodes for Enhanced Efficiency as A Sustainable Approach Preferred presentation: Poster presentation

Introduction and Motivations

The simultaneous electrochemical reduction of CO_2 and oxidation of glycerol presents a sustainable pathway for producing valuable chemicals while addressing CO_2 emissions and waste glycerol utilization from biodiesel production¹. Traditional CO_2 reduction systems often suffer from high energy demands and limited selectivity but coupling it with glycerol oxidation offers enhanced reaction efficiency and selectivity for desired products². Recent studies on Bi-based catalysts have shown promising performance, particularly in stabilizing intermediates critical for selective formate production, motivating the development of dual-function systems for improved catalytic performance³.

Results and Discussion

In this study, Bi_2S_3 nanoplates were synthesized on copper foam and electrochemically reduced to Bi nanoplates, which showed strong adherence to the substrate and high selectivity for formate (HCOO⁻) production during CO₂ reduction. The Cu foam/Bi catalyst achieved a high Faradaic efficiency at a low overpotential. In an electrochemical system, this catalyst was paired with a modified BiVO₄ photoanode for glycerol oxidation, enabling simultaneous CO₂ reduction and glycerol oxidation under simulated solar irradiation. This research highlights the potential of Bi_2S_3 -derived Bi nanoplates on copper foam as effective dual-function catalysts for CO₂ reduction and glycerol oxidation. The findings showcase the catalyst's stability and selectivity, paving the way for sustainable CO₂ utilization and the use of waste glycerol as a co-reactant in integrated electrocatalytic systems.

References

- 1. J. R. C. Junqueira, et al. ChemSusChem 2023, 16, e202202349.
- 2. A. Kormányos, et al. ACS Catal. 2024, 14, 9, 6503–6512
- 3. B. van den Bosch, et al. ChemPlusChem 2023, 88, e202300112

Acknowledgements

This work supports by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-003), and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (RS-2024-00343746).